APPLICATION EXAMPLE

Engineering guideline
for WinCC Unified

SIMATIC WinCC Unified V18 /V19

SIEMENS

Legal information

Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several components in the form of
text, graphics and/or software modules. The application examples are a free service by Siemens AG and/or a subsidiary of
Siemens AG (“Siemens”). They are non-binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute customer-specific solutions. You
yourself are responsible for the proper and safe operation of the products in accordance with applicable regulations and must
also check the function of the respective application example and customize it for your system.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the application examples used by
technically trained personnel. Any change to the application examples is your responsibility. Sharing the application examples
with third parties or copying the application examples or excerpts thereof is permitted only in combination with your own
products. The application examples are not required to undergo the customary tests and quality inspections of a chargeable
product; they may have functional and performance defects as well as errors. It is your responsibility to use them in such a
manner that any malfunctions that may occur do not result in property damage or injury to persons.

Disclaimer of liability

Siemens shall not assume any liability, for any legal reason whatsoever, including, without limitation, liability for the usability,
availability, completeness and freedom from defects of the application examples as well as for related information, configuration
and performance data and any damage caused thereby. This shall not apply in cases of mandatory liability, for example under
the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of life, bodily injury or damage to
health, non-compliance with a guarantee, fraudulent non-disclosure of a defect, or culpable breach of material contractual
obligations. Claims for damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross negligence or is based on loss of
life, bodily injury or damage to health. The foregoing provisions do not imply any change in the burden of proof to your
detriment. You shall indemnify Siemens against existing or future claims of third parties in this connection except where Siemens
is mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any damage beyond the liability
provisions described.

Other information

Siemens reserves the right to make changes to the application examples at any time without notice. In case of discrepancies
between the suggestions in the application examples and other Siemens publications such as catalogs, the content of the other
documentation shall have precedence.

The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems,
machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement — and
continuously maintain — a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions constitute one
element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems,
machines and components should only be connected to an enterprise network or the internet if and to the extent such a
connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends
that product updates are applied as soon as they are available and that the latest product versions are used. Use of product
versions that are no longer supported, and failure to apply the latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under
https://www.siemens.com/cert.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 2

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/cert

Table of contents

Table of contents

1. INTFOAUCHION ..ccereenneniiiiiiiiiiiiiieintnneuiiiiiiieinteeeetetssesesiiiieseseteessssssssssssssssssssesesssssssssssssssssssesessssssssssssssss 6
1.1. OVBIVIBW ...ttt et ettt ettt ettt e e et e e ettt e at et e et et e e sabe e e sat et e sat e e e et e e saba e e st e e net et enabeeeaneeeabnee e 6
1.2. (@e] g oo TaT=T ol U LY =To PSPPSR PPPPPPPR 7
1.3. EXplanation oOf the SYMDOIS USEAiiiiiieeeeeiiiee ettt e e e e e e ettt e e e e e e e e e e s s nnetsareeeeaaeaeeeennnnnnes 7
2. Preliminary INfOrmMationcuuueeiiiiiiiiiiiimiiiiiiiiiiiiieneeintniisieieeteeeeesssssesssssssessssessssssssssssssssssnsne 8
2.1. Reasons for using the ENGiNeering GUIAEINEuuiiiiiiiiiiiiii ettt e e e e e e e e e e 8
2.2. WOorkflow for NEW CONFIGUIAtIONS ...eeee ittt ettt e e e e e e ettt et e e e e e e e e s st aeaeeeeaeeeeeeaannnnnssnneeens 9
2.2.1. Use Case: State dependent scripting: Show / Hide SCreen CoNTENTceiiiiiiiiiiiiiiiiiiieeeeee e 12
2.3. Relevant sections fOr SCre@N ChaNGE ...cooiii ittt e e e e e e e e e et eeeaaeeeeeaanns 14
3. Best Practices of SCreen ENGiN@eriNgccccccveeeueueniiiiiiiiieieennnnnniiiiiicieeeeeeeessssssssssssssseseessssssssssssssssses 19
3.1. USE OF SCrEEN ODJECES .nttieeeiiit ettt ettt ettt e e s ettt e e ettt e e e s eabb et e e sabbeeeessabbeeeesnbbeeeeesabbeeeeaas 19
3.1.1. SCIEEN ObBJECT SEIBCTION ..ettttiiiie ettt ettt e e e e e e e ettt ettt e e e e e e e e s aebbbbee e et eeeeeesseanantbbbeeeeeeaaens 21
T I I B U @ 1 o] o Yo Yo [V Y = o SRR 22
3.1.1.2. Use Case: Button without Implementation of the Press and Release EVent.........ccooecvviiiiiiiiiiee e, 23
3.1.1.3. USE CASE: SIMPIE TEXE LADEI oo oo e oo eeee oo 25
3.1.1.4. Use Case: Colored SCreen BaCKGroUNGcceiiieiiiiiiiiiee ettt e e ettt e e e e e e et eeeeeeeees 26
3.1.1.5. Use Case: Custom Styles et s et et eeresee 27
3.1.2. Tidy up the Screen / Observe SyStem LIMItSoouiiiiiiiiiei ettt et e e sareee e 30
3.1.3. USAQgE OF SCrEEN WINTAOWS ...ttt e e e e e ettt e e e e e e e e ettt b e e e et e eaeeeeeesssnessasaaaaaaaaeesssaaassssssseeaeaaeeeeanannes 31
3.1.4. SCrEEN ODBJECT VISIDIIITY ..vtettetiieeeiiiei ettt e ettt e e e e e e e sttt e ettt e e e e e e s eaaatbbbeeeeeeeeeeas 32
3.1.4.1. Use Case: Visibility Dynamization of multiple Screen Objects by the same Conditionc.eeeeeieieiiiiniiinnnes 32
3.1.5. [oy TTe I @] o) SO UUUURRRN 35
3.1.5.1. Use Case: Different Settings in Runtime for Unified CoNtrolsoccuuiiiiiiiiiiiiiiiii e 35
3.1.5.2. USE CaS@: AlGIM CONTION ..eiiiiiiiiiiiiitie ettt e ettt e ettt e e s e bttt e e ettt e e e smbaeeeesabaeeeeaas 36
3.1.5.3. Use Case: Alarm Line CUSTOM SOIUTIONuiiiiiiiiiiiiiiiiiee ettt ettt ettt e ettt e e s ettt e e s et eeessnbaeeeeeanee 38
3.1.6. (CT T o] el et T oo IR € USSP 41
3.1.6.1. Use Case: Visualize Patterns and compoSed ODJECES.......uuuiiiiiiiieeeeiiiiiiiiiiiee e e e e e e e et e e e e e e e e e eeneennraaeeeeeens 41
3.1.6.2. Use Case: Composed Objects with Dynamizaton = dynamic SVG..........uuuiiiiiiiiiiiiiiiiiiiiiieeeee e 42
3.2 USE OF DYNAMIZATIONS .eeiiieeeiiieee ettt ettt e e e e e e e e ettt ettt e e e e e e e e aaabae e et eeaeaaeeesasannbbbbbeeaeaaeeeeaannnns 44
3.2.1. Y [aa] o] I el DY o T g1 Y4 o o HO SRR 44
3.2.2. SCIIPT DYN@MUZATION L.ettiiiiieite e ettt e ettt e e e e e e e e s e bbbt e ettt eeeeeeesaaaabbbb b e ettt eeeeeesaaaanbbbbeeeeeeeeens 44
3.2.3.] T ST3] o] o LT UUPPRRRN 45

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 3

Table of contents

V19

3.2.3.1. Use Case : Dynamize a Property depending on Single Bits 2227oiiiriiieierieeie e 46
3.2.4. FUTTNET OPTIONS ...ttt ettt ettt e e e e e e e e ettt et e e e e e e e eea ettt bttt eeeeeeeessasnnabbbeteeaeaaeaeesannnns 47
3.3. ULl o) i o= Yol o] oL =SS UUUURRRN 48
3.3.1. Essential INSights iNt0 FACEPIAtE USAGE weeiuueiiiiiiiiiiee ettt ettt e e et e e sttt e e e sebteeeeenatteeeeeas 48
3.3.1.1. Use Case: Faceplate that is not always Visible in Runtime et eeeeee e see e eeeee 48
3.3.1.2. Use Case: Strings in the Property INTEIACEcoiii ittt e e e e e e e ereeeeeeeeas 49
3.3.1.3. Use Case : Dynamic Data Connection for hierarchical Faceplates........cccuviiiiiiieieeeiiiiiiee e 50
3.3.2. TEXE LIStS IN FACEPIATES .eeeeiiiiiiiiee et e e e ettt e e e e e e e e ettt et e eeeeeeeeeeesaaaabasaaaaeaaaaaseassesssssaeraeaeeeeassnsssssssnes 51
3.3.2.1. Use Case: Transmitting @ Subset Of the TEXT LISt ..eeeeeeeieiiiiiiiiie e ee e 51
3.3.2.2. USE CASE: SEAIC USE OF TEXE LISIS o vvvrrreeerreeeessseeesseseesessseesseeseeseesseeeseseesssseseeeeeseesseseeseeeeesseseseeeeseeseseseee 54
3.3.2.3. Use Case: DYNamiC USE OF TEXE LISTS tireeeeiiiieiiiiiiiieieeeeeeeeseeiiite et e e e e e e e e e teteeeeteeeeaeeeesasanntbsseeeeeaaeeeeaanannnnnnnens 55
3.4. Lo Yol g o £ PP PO PPPPTRUPPPPON 59
3.4.1. Yol] o) A o T 1T USSP PRSPPI 59
3.4.1.1. Use Case: Scripts Using the SAME TrgGEr TAQ weeeeeeeeeeeeeoieeiietteeeeeeeeeeeeietetteeeaaeeeesasanneetsareeeeaeesseeasannnsssaaeeaeeens 60
3.4.1.2. Use Case: Trigger Scripts unrelated to Screen Object PrOPErti€sccovvuvieeeriiiiieeeiiiiiiee ettt et e e 62
3.4.2. EFICIENT COUR ettt ettt e ettt e e sttt e e sttt e e sttt e e ettt e e e earreeeeeas 64
3.4.2.1. Use Case: Write and Read MUILIPIE TGS ...ccoouriiriiiiiiiieiie ettt et ettt et 66
3.5. (0 o= £SO PP ST ST P O P TOP T OS P TP PP PRSP P PP RPPPPRTRPPP 69
3.5.1. ACQUISTION CY IO et iiieee e ettt ettt e e e e e e e e et tte e et eeaeeesaaaanasaaeeeeeaaaaaeeesaanstesseeeeaaeeeeeaanannnnnnnes 69
3.5.1.1 Use Case: Writing a PLC Tag in Screen Loaded EVENTcocuiiiiiiiiiiiiiiiieiec et e e 70
3.5.2. Use Case: PLC UDT Arrays With MUITIPIEXING c.uueeiiiiiiiiieeee ettt e e e e e e e e e e 73
4, Analysis of an eXiSting ProjeCt......cccccceiiirreueiiiirrmneiiiiiemueiiiiiemniisiissnesississsessssrssssssssssssssssssssssssssssssesss 75
4.1.) oL Yol g1 o] €3 Yo [o B 1o U RPN 78
4.1.1. Download @and INSTAlAtioN ...c...uiiiiiiiiee et e st e e 78
4.1.2. Usage of the SNOWSCIIPTS AQG-INeiiiiiiiiiee ettt e e e e e e e ettt e e e e e e e e e e s nababeteeeeaaeaeeaaannns 79
4.1.3. Preparation of the SCree@n OVEIVIEW Filccoeiiiiiiiiiiiee ettt e e e e e e e e e e trbbrreaeeaeeeeeeennes 81
4.1.4. Analysis of the SCreen OVEIVIEW Fileoiiiiiiiiiiiiiiee ettt e et e e e e e e e e 83
L Ot I N o - 1V o) Bl € <T=Y o W o] 1 1= P UUUPRRRN 83
4.7.4.2. USAQE OF CONTIOIS ...eiieiiiiieee ittt ettt e ettt e e e bttt e e s ettt e e e ettt e e e sabb e e e e anbbeeeesabbeeeeennbbeeesennnbeaeeans 85
4.1.4.3. USage Of DYNAMIZATIONS oieeiiieieiiietee et ettt e e e e e e e ettt e e e e e e e e e s aea ittt e eeeeaeeeeesaannatsaeeeeaeaeeeeaannnns 86
4.1.5. ANalysis Of the @XPOITEA SCIIPTS ..vvviiiieeeeeiieiciiiii et ee e e e e e e ettt e e e e e e e esaeetraeaeeeeeaaeaesssnsnnssreeeaeaeeeeaasnnnsnsnnnns 88
4.2. WinCC Unified JS Connector oo ee sttt 91
4.3. RUNTIME ANAIYSIS ...ttt et et sat e et et e ettt e sabe e e saneeenaneeeaneenane 93
4.3.1. RTIL TIACE VIBWET ...ttt ettt ettt e e sttt e e et e e e sttt e e sttt e e e saba et e e saebaeeeeeabaeeeenas 93
L T Ot I Ve [[oY o Y I 5 - Yo 1O UEPURR 95
4.3.2. Yol g o1 R DLl 10 e o 1T PSPPI 96
5. APPENAIX ccereiirnenireninirnseranestraserassotssessrssssssssssssssssssssssssssssssssssssssassns 101

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 4

Table of contents

5.1. Y=] QY el Ta Lo U o] o To T PSR RRR PP 101
5.2. LINKS NG LIEEIETUIE ..ttt ettt e bttt e e ettt e e ettt e e e s sttt e e e e eatbaeeessabbeeeeeaabbeeessnnaeas 102
5.3. Change dOCUMEBNTATIONviiiiiiiiiiiet ettt e e e e e e e ettt et e e e e e e e e sttt e e ettt eeeeeeseaaaabbaneeeeeeeas 102

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 5

Introduction

1. Introduction

1.1. Overview

SIMATIC WinCC Unified is the completely newly developed visualization system from Siemens in the automation
environment. The SIMATIC WinCC Unified system consists of the SIMATIC WinCC Unified visualization software and the
new SIMATIC HMI Unified Comfort Panels as well as the Unified Basic Panels.

The Unified Comfort Panels extend the product range of the SIMATIC Advanced Panel-based HMIs and are the successor
devices of the SIMATIC HMI Comfort Panels. In addition to the new hardware, there are numerous innovative new
features that have a lot of impact in the way you use things. To get a better overview of the steps that help you get the
best out of the new features and behaviors in Unified Comfort panels and PC Runtime, this document will address several
topics. We will discuss the advantages and guide you through the steps of the changed process.

The content of this document refers to the entire Unified HMI portfolio, unless there are further references to device-
specific information.

¢ \ 4

¢ L1 o

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 6

Introduction

1.2. Components used

This application example has been created with the following hard- and software components:

Component Number Article Number Note

WinCC Unified Engineering V18 1 6AV215.-...01-8A.5 Engineering in TIA Portal

WinCC Unified Engineering V19 1 6AV215.-...02-3.A5 Engineering in TIA Portal

SIMATIC HMI Unified PC Runtime V18 1 6AV2154-..B01-8.A0 Runtime System

SIMATIC HMI Unified PC Runtime V19 1 6AV2154-..802-3.A0 Runtime System

SIMATIC HMI Unified Comfort Panel MTP1200 1 6AV2128-3MB06-0AX1 Alternatively, any other SIMATIC HMI Unified

Comfort Panel can be used.

You can purchase these components from the Siemens Industry Mall.

NOTE Please note that all functions shown or explained in the document only apply to WinCC Unified V18
and V19 including updates.

This application example consists of the following components:

Component File name Note

Manual 109827603_WinCC_Unified_engineering_guideline_DOC_V2_en.pdf This document

1.3. Explanation of the Symbols used

The following table shows the used symbols that indicate for which version the described recommendation can be
applied. If no symbol is used, the content has no restrictions on the version.

Symbol Unified Version

vis Only related to V18

V19 Only related to V19

V19 Only related to V19 Upd2

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 |7

https://mall.industry.siemens.com/

Preliminary Information

2. Preliminary Information

2.1. Reasons for using the Engineering
Guideline

Unified Panel and PC-RT Devices offer the latest technologies, such as HTML5, JavaScript and scalable vector graphics
(SVGs). This makes them more powerful and able to offer a wider range of functions and capabilities than the old Comfort
Panels and WinCC RT Advanced systems, allowing you to get more out of your system. In order to use them efficient this
document provides some recommendations for the engineering. The presented implementations can be helpful if you
start a new project but also if you have an existing project already there.

When creating a new project, it is recommended to first work through the engineering guideline. It will provide the
knowledge to use the resources of the devices the most efficient way.

But also, if there is already an existing Unified HMI project, this guideline contributes to further improve the
implementation. There is also an explicit section on how to analyze a project to find the areas that can be improved easily.

If optimizations regarding Java Script code in general, the style guide for scripting and the HMI layout can be found in
additional documentation: StyleChecker, HMI Template Suite, Tips and Tricks for Scripting

All tools can also be found in section 5.2. Links and literature.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 8

https://support.industry.siemens.com/cs/ww/en/view/109801600
https://support.industry.siemens.com/cs/ww/en/view/91174767
https://support.industry.siemens.com/cs/ww/en/view/109758536

Preliminary Information

2.2. Workflow for new Configurations

The moment you start creating completely new configurations or even just new screens is the perfect opportunity for you
to utilize the new WinCC Unified function in the most efficient way. In this context the term view is used and stands for

the entire display of an HMI and thus for a combination of several screens in a screen window arrangement. When
creating new views, the first step is to collect all the content that should be displayed in advance. Depending on its
reusability, you decide to categorize into individual content or content that will be used in multiple screens. The

procedure of the most efficient handling is explained in the following scheme.

Createa
screen/view

Collect content
and group the |4

information

|

Is the content
displayed
Yes permanently?

A4
Put the content

directly on the
base screen.

Put the content, that is used in
multiple screens (e.g. Alarmline,
navigation buttons, username), in a
separate screen window, to reuse it
and to only load it ones for different
screen assemblys.

Is the
content
also
displayed in
other
views?

No

\4

This is content for an
individual screen of
this view. Select the
necessary screen
items and design the
screen.

Arrange the view with the view-
individual screen/content and the
multiple used screens with
screen windows.

Figure 2-1 Flowchart: Creating a view with screens

Entry ID: 109827603 | V2.0 | 06/2024

Content
for this
view is
complete
?

No

© Siemens 2024 | 9

Preliminary Information

The result of this configuration could be a screen layout like it is displayed in the following figure. All individual screen
windows are highlighted with an orange frame.

For guidance on structuring your project, consider utilizing the HMI Template Suite. This template helps to create and
organize the display area into distinct screen segments with versatile screen navigation (see Figure 2-2). It prioritizes
performance and design aspects, ensuring an intuitive operational concept.

NOTE A detailed description about the setup and usage is available in the application example
HMI design with the HMI Template Suite

Screen layout == =ssss Screen window

Main

ThirdNav

Content

Figure 2-2 Example of a view using several screen windows

Once you have determined which elements are to be placed on which screen, you can continue working on the individual
screens. Most of the screen items need dynamic properties or will use events to trigger system functions or scripts. To
implement these dynamizations, the following scheme shows you which implementation might be best for your
application. Depending on the desired functionality, select a suitable element from the toolbox and drag it onto the
screen if it is not already there.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 10

https://support.industry.siemens.com/cs/ww/en/view/91174767

Use expressions

| Properties | Events [Texts || Explessionsl ||
B Add property Remove property

Condition

<Add new

Collect required functionality and
select an item from the toolbox

|

Select and configure a
screen item

Use
dynamizations

There are
more
properties
dynamized
with the same
tag?

l

Need

Preliminary Information

different | Usestatic
property values

settings?

Use tag
dynamizations

Use
expressions

A property

needs to be

dynamized
with a
logic?

Use simple tag
dynamizations

Use the events from the properties, on
change events or tag triggered script
dynamizations (avoid cyclic triggers!)

|

Need
status

Use scripting logic
(switch case) to
decide which script is
executed. Avoid
multiple overlayed
objects)

dependent
scripting?

Delete scripts without content!

IAlso the empty function

Configured
screen item
Figure 2-3 Configuring a new screen item flowchart
NOTE In general, tag dynamization is the most recommended dynamization type. If a more complex logic is

necessary, use the Expressions. Try to avoid script dynamizations. Nevertheless, if a scripting logic can
replace multiple overlayed screen items, then use scripts. e.g., a button to show and/or hide other
elements: Use one button and decide through scripting which method (show or hide) is executed

(see chapter 2.2.1).

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 11

Preliminary Information

The following section explains the practice of a scripting logic instead of multiple objects with a simple use case.

2.2.1. Use Case: State dependent scripting: Show /
Hide screen content

Scripting in WinCC Unified now offers many more options for configuring screen elements and makes them much more
flexible. As described in the following use case, a single button can trigger different actions depending on the current
state.

Description

The concrete action or scripting behind an event can often depend on the current state. In this exemplary use case, there
should be a button to show and hide a specific screen content (here: a rectangle), dependent on the current visibility of
that screen content. One solution could be to use two different buttons, that implement once the show-action and once
the hide-action and to change the visibility of these two buttons also with the current state. The second solution could be,
having only one button, and decide by scripting (switch ... case), which action should be done.

Solution

Use a single button for this task and implement a scripting logic for the decision if the visibility of the content needs to be
set to be visible or not. Directly use the same tag (here: “ContentVisible”) for

e Indication of the current state
e the visibility dynamization of the content
e the button text dynamization

As this use case is very simple, the inverting of the state tag “ContentVisible” in the scripting logic could also be just done
by a system function through the button click event. But to demonstrate how the implementation could look like for a
more complex use case the screenshot shows the implementation with switch case.

To change the button text for the different states, it is dynamized with a text list and again the state tag.

A4 | Layers

w [004_CustomStyles
Layer_0

Layer_1

Layer_2

[Rectangle_Content

-
0y Oy L

¢ m [>[[100% |2 Wvvreeireveeees
|_Q, Properties ||"_1., Info i "i Diagnostics " Plug-ins | =
| Properties || Events || Texts || Expressions | =
-"ﬂ.'l =1 Glebal definition Ef| synchronous =
i] 1 export function Button Show | - OnTapped {item, = Layer_8
Deactivated B cam state - rac"") Read{) = Layer 9
3 const = Tag: g") .Read(): =
[38 Click left mouse button N : Lol
Press key < = LEn
Release key g e R
Click right mouse button 7 2 L
~ | Grid
10 Layout mode
L o ; PrEak (®) snap to lines
M _h (i snan ta arid

Figure 2-4 Show-Hide button use case scripting logic

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 12

Preliminary Information

[+][100%

|g Properties

”"3 Info i ”i Diagnostics

" Plug-ins |

J Properties ” Events " Texts " Expressions |
3=y v ® Resource list
Mame static value 4 Dynamizat)
i Settings
¥ General
» Font Tag: |ContentVisible
b Text Button Show E Resource list Resource list: |Button_Show_Hide
¥ Appearance

Figure 2-5 Button Show-Hide use case button text dynamization

In the following solution, that is NOT recommended, two overlaying buttons are used, one to set the visibility of the

rectangle to true and a second one to set the visibility

to false. To make the buttons accessible at the right time, their

visibility is also dynamized with the visibility state of the rectangle. For such use cases with a state depended action, the
previous shown scripting solution is better than having multiple overlayed screen item, in order to minimize the number

of objects per screen.

T —— o] v [Layers
. [Ganancaaang =[] 004_CustomStyles
Button Show Content v = Layer 0
< [
|g Properties ||:1. Info & ||i Diagnostics H Plug-ins | ’:yRe:;tang\e_Conlenl
= Layer_:
‘ Properties H Events H Texts ” Expressions | = er 4
ltvBE B X “ Layer 5
i = Layer 6
Activated Name Vvalue % Layer 7
Deactivated + SetTagValue < Layer_8
5l Cick it mouse butor] - S s
Press key Value 0 % Layer_10
Release key v SetPropertyValue “ Layer_11
Click right mouse button Screen object path Rectangle_Content = Layer_12
Screen object propertyname Visible
~ | Grid
Value 0
<Add function> Layout mode
Figure 2-6 Two overlaying buttons for the show-hide-task
|_O, Properties ||"_1, Info i ||i Diagnostics " Plug-ins
J Properties " Events " Texts || Expressions |
H By A
=T o Tag
Mame Static value # Dynamization (1)
Process
Layer Layer_1
Name Button_Hide Tag: |ContentVisible |5§
» Read-only M None PLC tag: A
Tab index 0 Address: Bool
»_Jooltin Lone
b Visibility ™ Tag EI — —
Type Condition Visibility
T
o o
Authorization ONone S
. . 1
Explicit unlock -required B () Range =
» Operator control -allow M None - e TR

Figure 2-7 Visibility dynamization of the two buttons

The reason why the use case example applies text boxes as buttons, is explained in chapter 3.1.7.2. Use Case: Button
without Implementation of the Press and Release Event.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 13

Preliminary Information

2.3. Relevant sections for Screen change

In Unified as well as in other visualization systems, screen changes play a central role in the representation of your various
plant screens and in the user experience. A quick screen change gives the user a good feeling of efficiency in the
projected elements, but a slow or long-lasting change makes them feel uncomfortable. With a few small tricks, you can
prepare the screen changes even better.

To get the most out of your engineering steps, it is important that you understand how to realize the steps in the best
way. Before going into too many details about the “right” implementation, it is also important to get familiar with the
procedure of how a screen loads in runtime.

Loaded event base
screen

Base screen build
with initial values

Start screen, dynamizations

Eventually tag
and property
change via
script

Cleared event of
the previous
screen

Tag registration Loading
dynamization
with changed

tags

Faceplate instances

Screen windows

own cycle decoupled
from the loading event
of the base screen

Figure 2-8 Screen load procedure

The screen load procedure of an individual screen is mostly separated in synchronous sections, meaning that one thing
happens sequential after another. As the layout is often made by the composition of nested screens and Faceplates, it is
important to know, that for each screen window and Faceplate instance there is an own decoupled cycle.

At the very beginning of a screen change, even before the new screen is loaded, the previous one gets cleared.

After this step is finished, the base screen is built and all properties, even if they are dynamized, e.g., linked to tags, are
loaded with the static value for an initial load of a screen. All nested Faceplates and screens in screen windows are loaded
in an own decoupled cycle also first with static values.

Next the screen “loaded” event, that also can be customized in the engineering, is executed.

The tag registration happens after the initial load of the screen. When the tag registration is done, all dynamizations are
considered and the screen item properties that have a linked tag in the dynamization area can change again from the
static value to the value of the dynamized tag.

If tags, linked to any dynamization or any property are changed in this context again, also the screen item properties can
change again. Through this order, the on-change event of a property can be executed twice during the screen load
procedure. This second call of the change event is highlighted orange in the following figure (Figure 2-9).

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 14

Preliminary Information

Screen
Loads

Screen Item properties load with

Properties [bvonss_| Tas
ESEY &=
-

| Exprossians |

o ook # Dymamanoen
R —— —
Ropeansce -ije e Hemcivnaie
» Bnchgroun st [. 55 e
calor [Jass. 2580 -
» vschgrona i pumem S

Is there a
dynamization
for the

erty?

Is the
screen
load a
runtime
start?

The dynamizations are triggered Tag dyamizations

with the initial values of the tags are triggered with

riwrs the latest value of
e ———— the tag

o e - ip———"
v

[Properies | Lvewis | Tunis

s
E—— Property change
BEET 4 event execution
= P # Dmanimiontd
= enent
—
= e Property
+ - —]
s —— ™ QualityCode
v " =
Vb e e Change event
i o
e e
cunicote o
o= et = Screen load
ST (s event
Moo -
e i
-

Is the tag or Is the property
property value changed
value in the screen
changed in load event?
the screen (independend
load event? of the value)
Is the
value
different
from the Property change
Tag dyamizations last value? event execution

are triggered with
the new value of
the tag

2. Property

change event

execution
!
Iltem Item Item
. . . Item
property is property is property is roperty is
loaded with loaded with | loaded with property.
loaded with
the tag the tag the new .
static value
value value value

Figure 2-9 Call of the change event of screen item properties during screen load

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 15

Preliminary Information

The following chart shows the different behavior when a PLC Tag is used for dynamization. The important points are the
PLC acquisition cycle time and the second execution of the quality code event. More information regarding acquisition

cycle in general can be found in section: Acquistion Cycle.

Screen

Loads

e

b e

= dpprmnse

Screen Item properties load with

BsETT=

b Ouput e

aneasmaee -snie nem

st valve | Opnamitation 12)

mpugn o

Is the

screen

load a
runtime
start?

No

pmieels
v

Is there a

dynamization

property?

script

for the No

Same as other Flow
chart

The dynamizations are triggered
with the start values of the tags.

Script dyamizations
are triggered with
the latest value of
the tag.

FIRST
execution of

the script

Is the

trigger a
PLC tag?

The following processes do not run in a deterministic manner depending on the workload

Screen load
event

Quality Code
change of PLC Tag
triggers 2.
dynamization
script execution

1. Property
change event
execution

Property
QualityCode
Change event

it

The following processes do not run in a determined manner
depending on the workload

Property
QualityCode
Change
event

Property
change event
execution

Screen load
event

PLC Tag
written
in loaded
Event?

New value is visible in
HMI after the
acquisition cycle time

s the tag o
property

changed in
the screen
oad eventZ

Is the
value
different
from the
|ast value?

2. Property
change event
execution

value

I
Item property is
loaded with the tag
value.

Figure 2-10 Dynamization with PLC Tag

Entry ID: 109827603 | V2.0 | 06/2024

Item property is
loaded with the tag
value.

© Siemens 2024 | 16

Preliminary Information

Another important aspect are the execution contexts. A context is an independent Runtime environment where a specific
script or task is performed. The different contexts work parallel in Runtime; therefore, you can handle several scripts and
tasks at the same time.

Event Properties
context context

I

|

| Dynamics

| context

| (Tag
dynamizations &

| Expressions)

| _—

Figure 2-11 Script and dynamics execution contexts

As you can see in the figure above, the main separation is made into scripting and dynamics. This already indicates why
the tag dynamization and Expressions are preferred to the script dynamization as they work in parallel to all processed
scripts.

For the scripting the separation is between the scheduled tasks context and screen context. Each screen has its own
scripting context for scripts and system functions. The namespace (global definition area) is unique for each scripting
context. The scheduled tasks and also scripts in the screen context can be triggered cyclically, tag triggered, or alarm
triggered. Both is important for the load procedure, the decision if the script is implemented in the scheduled task or
screen context but also which trigger type is used (see chapter 3.4.1).

With this information it can already be defined what configurations are relevant for screen load.

Script Is relevant More information

Screen loaded event v Figure 2-8 Screen load procedure
Script in the global definition area of screens 4

Scheduled tasks - Figure 2-11 Script and dynamics

execution contexts

Script modules (referenced) v

Scripts in “Click left mouse button” events -

Property on change event scripts v Figure 2-9 Call of the change event
of screen item properties during
screen load

Dynamization scripts v

Table 2-1 Overview of screen load relevant scripts

Object / Implementation Is relevant More information
Faceplate interface v 3.3 Use of Faceplates
Expressions v

Dynamizations v

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 17

Preliminary Information

Object / Implementation Is relevant More information

Number of used HMI tags v See system limits in Unified
manual \9\

Number of screen elements (items, Faceplate- v See system limits in Unified

instances, screen windows,...)

manual \9\

Type of screen element v

Table 2-2 Overview of screen load relevant objects

3.1.1 Screen Object Selection

As you can see, there are a lot of things that affect the procedure of screen change at the runtime device. To give you all
the detailed information on the single aspects, we're focusing even more on the following areas. You will also receive a
description and best practice how to implement the features in the most efficient way. If a project needs to be analyzed
there is a guideline provided in chapter 4. But first this document describes the best practices for screen engineering in

more detail.

Use of Dynamizations

Expressions,
Dynamizations, Scripts

Use of
Faceplates ; i
Faceplate vs. AI-I
Single screen | ndll

objects

Faceplate Interface
Data Types

Figure 2-12 Best Practices Topics Overview

Entry ID: 109827603 | V2.0 | 06/2024

(T

Best Practices

Use of Screen Objects

How much and which
objects

Use of Scripts
Loaded Event,
Loops, Cyclic, Tag
triggered

Others
Tags

© Siemens 2024 | 18

Best Practices of Screen Engineering

3. Best Practices of Screen
Engineering

In this section lots of recommendations for the implementation of an HMI are described. Therefore, we will first show you
on which aspects you can have an influence and which possibilities you have. Then we will give you illustrated details
with the help of an exemplary use case. We split the sections in the use of screen objects, dynamizations, Faceplates,
scripts and others.

NOTE To support the comprehension of these best practices, the general screen load procedure is described
in the chapter 2.3.

3.1. Use of Screen Objects

In the following figure, the available items of the Unified Toolbox for a PC-RT can be seen (The content for a Unified panel
can differ). In general, there are five relevant sections that separate them: The Basic objects, Elements, Controls, My
controls and the Dynamic widgets.

Options A

=
v ‘ Basie.objects E’

V19

Aal H @ @ A 4L

£
X x*

=
V‘Elements f
A S0y o i E £ B
& O B 32 @ r

B
V‘Cnntmls 5
AEE I @ B
=z R 6 = E=E B
EH g @ 5 El E [>

o
V‘Mycontrols 3
o LI

Audit Viewer Flant Reports
overview

hd ‘ Graphics
5

L3 2 WinCC graphics folder

GE

v iDynamic widgets :

e}
o

b] Indus tryGraphicLibrary

Figure 3-1 Unified Toolbox V19 for PC-RT

In general, all recommendations of this section about screen objects follow one rule.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 19

Best Practices of Screen Engineering

Screen object usage
Minimize the number of objects on the screen and select the ones with the smallest necessary @

footprint]

Before we go on, it is important to mention that each object has a footprint. With footprint the rendering effort is
described. A small footprint is associated with a small number of properties and the low complexity of the screen item,
e.g. a rectangle. Objects with a higher footprint often contain a lot of properties as the controls do have. Besides the fixed
properties, also the customization through dynamizations can increase the rendering effort of a screen item and therefore
influence the loading procedure of the whole screen.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 20

Best Practices of Screen Engineering

3.1.1. Screen Object Selection

First, when placing a new object on the screen, select the one with the smallest footprint and just the necessary
functionality. In general, you can say that the complexity raises from Basic objects to Controls, as the order in the toolbox.
The following illustration shows all screen objects in the order of the required rendering effort. Please note that the
rendering effort shown in this illustration has no time equivalent and only displays the relation. The actual rendering
effort depends also on the configuration (dynamizations and connected data).

Basic Objects

Elements

Dynamic SVGs

Basic Controls

Alarm, Trend, PaCo,
SysDiag, ProDiag

Advanced Controls
Audit, Reporting,
CMP

Custom Controls

——-

Rendering Effort

Figure 3-2 Relative comparison of the screen items’ rendering effort

In the groups themselves there are differences as well and the most important thing to understand is that each screen
object has an individual rendering effort (footprint). Before we go on, make sure that you know the toolbox elements and
even the adaptions in V19. The text and text box adaption is shown in the figure below.

Options » Options)
@ ~ = I EL =
EZE) = 3
T = — 2
v | Basic objects g | v | Basic objects g
Al ~, H @

v

& 2

E g

g =

= 2

M 3

g =

= a

&

| L

& =

= 3

g o

o @

@

3 EH

e >

=

Figure 3-3 Toolbox V18 vs Toolbox V19

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 21

Best Practices of Screen Engineering

NOTE (v18) The Text box from the basic objects has moved to the elements section for V19. The same looking item
in the basic objects of the V19 toolbox is now “only” a text, comparable to a simple label. So, if the
engineering system is a V18 version, the rendering effort of the Text box is also higher than for the
basic objects and comparable with the items from the elements section

Sometimes, there is more than one possibility to display a functionality with different objects. Even if two objects look the
same when configured on screen, they can have different influence on loading time of the whole screen. In the following
some examples are shown.

Even if the following examples do not cover a complete real use case, keep these points in mind when configuring a new
screen.

3.1.1.1. Use Case: Colored Square Box

Description

This use case is about the configuration of a colored square box as you can see in the figure below. Possible solutions can
be a rectangle or a Text box without text assignments because they can look the same on a screen.

Solution

Instead of using a Text box, the rectangle element is the better choice due to its smaller rendering effort.

. .a r;‘ r;‘ .. EEEREESEEE R L TR TR EREE R
o =] o o
e g s EEEEINENIEE | NSNS SN | hease o o L TR I T I
< i < il
J Properties || Events || Texts || Expressions | J Properties || Events || Texts || Expressions |
BEEYw BEE[
Mame Static value Dynamization (0} Mame Static value Dynarization (0}
‘l_l’x <Search= B All B All E fx <Search= B All B All E
¥ Appearance > General
Appearance - style item HmiRectangle » Font
» Background -alternative ... [0 128, 128, 128 Mone b Text None
» Background -color I:l 204, 255, 204 MNone ~ Appearance
» Background -fill pattern Solid None Appearance -style item HmiTextBox
» Border -alternative color l:l 255, 255, 255 MNone » Background -alternative - 128,128, 128 None
» Border-color [100, 100, 106 Mone = » Background - calor |:|204a. 255, 204 None =
Figure 3-4 Rectangle vs. Text box
Screen object selection
Always use the screen object with the smallest footprint and the necessary functionality

el

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 22

Best Practices of Screen Engineering

3.1.1.2. Use Case: Button without Implementation of the Press and
Release Event

Description

This use case is about the configuration of a Button that only uses the “Click left mouse button” event and without
implementation of the press or release event. Possible solutions can be a Text box, a Text (V19) or a Button.

Solution

In terms of rendering effort, the text has the smallest footprint, followed by the text box and the button. Therefore, use a
Text box if you need a background color, otherwise a Text if they fulfil your requirements. Also, these items have on
mouse click events. Only use a button when the press and release events are necessary.

Properties Events || Texts || Expressions |

+t TEHE B X

Activated Marne

Eeauiated <Add function=
Click left mouse button:

Press key

Release key
Click right mouse button

Figure 3-5 Text box as a button

|Properties || Events || Texts || Expressions |

TT HE S X

Activated

Name
Bea A <Add function=
Click left mouse button:
Press key
Release key

Click right mouse button

Figure 3-6 Text as a button

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 23

Best Practices of Screen Engineering

JALYESSATHUF+EE WEINS 6 & &,

Button_:| [Button]

Activated
Deactivated

Click left mouse button

<Add function=

Press key

Release key

Press

Release

Click right mouse button

e

Figure 3-7 Button as a button

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 24

Best Practices of Screen Engineering

3.1.1.3. Use Case: Simple Text Label @)

Description

For text element of the screen a Text box or a Text can be used.

Solution

Whenever possible, especially for simple labels, use a Text instead of a Text box. The following table shows the different
feature sets of a Text compared to a Text box. Compared to the text box, the reduced functional scope of the text causes
the lower food print and rendering effort at the runtime device.

Property Text Text box

Colors Foreground Foreground, background, border,
alternative colors

Border X Color, Width
Format — Spacing X v
Format — Text trimming X v
Format — Text break X v
Miscellaneous — Connection quality X N
Miscellaneous — Read only X v
Parameter Field v v
Editable / Input Text (in RT) X v
Copy and paste (in RT) X v

Table 3-1 Comparison of a Text and Text box screen item

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 25

~ Appearance

J Properties || Events || Texts || Expressions |
Name static value 7 Dynamization (1}
> General
> Font
Font siemens 5ans, 14pt
b Italic MNone
P Name siemens 5ans Mone
b Size 14 MNone
b Strikethrough MNone MNone
» Underline None
b Weight Mormal None
I b Text Texd] rce list E

Figure 3-8 Text property parameter field

3.1.1.4.

Description

Appearance -style item HmiT| g Faste
¥ Background -alternative color -1 % Delete
» Background -color |:|2 | I
; = Selecta
» Border-alternative color |:| 1
» Border-color -1 Insert parameter field... |
» Border-width 0 Clear formatting
¥ Focus -show visual Aa ch ol
ange to capital letters
» Foreground - color - g P
» Opacity 1 None
<] M
Process
J Properties " Events " Texts " =
Tag: || ...
iA E - — ¥ N
+Z = W PLC tag: 4 @Currentlanguage
Mame td Address: “a @DfeltaActl?.ratlon.State
~ General 40 @DiagnosticsindicatorTag
- Font 4 @HMI_Connection_1_PLC_OpState
Font <y | Format 4@ @HMI_Connection_1_PLC_OpStateCtrl
- ltalic Display type: 40 @LocalMachineName
Change T . 40 @ServerMachineName
< T 1 <
Quality code change Lenath -;]I@J)utemﬁctn.ratlon;tate
ength:
b Name Sig 4 N
v size 14 Decimal places:
Change Alignment: |Right |V|
Quality code change Leading zeros: [
b Strikethrough Ng
» Underline
b Weight Ng
b Text ext<Tag : 5, #unresolved#=> |L| Resource list [L]
¥ Appearance
:| Appearance - style item HmiTextBox
R .o . e

Use Case: Colored Screen Background

In some cases, the default background color of a screen needs to be adapted.

Solution

Best Practices of Screen Engineering

Instead of adding an additional rectangle to the screen and using its background color as the screen background, change
the color of the screen element directly. This is also relevant for Faceplates.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 26

Best Practices of Screen Engineering

J Properties || Events || Texts || Expressions

PV e

Marme Static value Dynarization (0}

¥ Appearance
» Background -alternative CD 235, 235,235 Nane

I » Background -color D 192,192,192 I Nane
¥ Background -fill pattern 'Salid Mone

¥ Format
¥ Alignment - harizontal Left Mone

Figure 3-9 Background color configuration of a screen element

3.1.1.5. Use Case: Custom Styles @

Description

It is common that a corporate layout also comes with a corporate color palette and designs. Through the object properties
the screen items can be adapted to this layout and design. But also, the overall appearance of objects like buttons can be
part of the corporate design or even the visualization of more complex objects like sliders.

Solution

It is always preferable to use the Unified screen objects with their intended function. The reproduction of user-defined
designs of an item with the help of several screen items should be avoided, as this leads to a higher number of screen
objects and usually to additional unused functions of these auxiliary items. Also, the use of Faceplates as a
standardization method for corporate designed objects create an unnecessary overload. Use the SIMATIC WinCC Unified
Corporate Designer to create these designed objects and also colors as part of your own style and use this style in your
project.

Inside the corporate designer a new style can be created already based on existing styles. Then you can either change the
style of existing objects or also create completely new objects. These styles can also be linked to color palettes and fonts.

When the style design is finished, the style needs to be exported and the generated file must be copied to the project
directory (Userfiles > Styles). After these steps the style can be selected in the runtime settings.

WinCC Unified Corporate Designer - 0 x

SIEMENS

[Tl < BacktoProjects

¥ STYLES FONTS COLOR PALETTES
=+ Create New Style P,{_ Import style
2 DemoStylel b o DemoStyle2 b P SiemensStyleLibrary_

Object Versior: 1.0.0 Object Version: 1.0.0 Object Version: 1.0.0
Runtime Version: 19.0.0.0 Runtime Version: 19.0.0.0 Runtime Version: 16.0.0.0

Description: - Description: - Description:

Figure 3-10 Unified Corporate Designer Project View

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 27

https://support.industry.siemens.com/cs/ww/en/view/109824234
https://support.industry.siemens.com/cs/ww/en/view/109824234

WinCC Unified Corporate Designer

SIEMENS

Best Practices of Screen Engineering

I < Back to Overview

Search Q

A

HmiPolyline

HmiText

ELEMENTS

[

BackwardNz

SimpleButto

O

HmiRectang

b

HmiGraphic'

CenterNavig

a

HelpButton

a

HmiRoundB

a

SimpleButto

SiemensStyleLibrary_1_0

ertie

Widget

‘ ASSIGN COLOR PALETTE AND FONT GROUP

OO0

)

- o)
O

8)

BackwardNavigation

Rendering Template

style.ssirt.button.navigation.backward -
Name Value
AlternateBackColor M #50s080 \
|
|
AlternateBorderColor #FFFFFF }
BackColor M :2712ec
BorderColor #EAETVEB
BorderWidth A
2 e
> Content
> Font
ForeColor #E4ET7EB
Height
sk 40 2

Figure 3-11 Unified Corporate Designer: Edit View

The style that is selected in the runtime settings of the device, can still be changed on demand in runtime. Also, with the
new custom styles.

Screen
Startscreen:
Selected style:
Screen resolution:
Bit sel 1 I 1 for multipl

|Screen_1

B

SiemensStyleLibrary 0_9 (V1.0.0) |-

Eright style
Extended style
Dark style

0_9 (V1.0.0)

Figure 3-12 Style selection for the Unified Runtime

Entry ID: 109827603 | V2.0 | 06/2024

BElix

1
3
4

w

2| Global definition 3| synchronous

E W X 9 G,

export function Button 1 OnTapped{item, x, v, modifiers,

HMTRuntime.UI.Styl

]
1
;

© Siemens 2024 | 28

Best Practices of Screen Engineering

< | [T
J Properties || Events || Texts H Expressions
tzEVhe

Name Static value Dynamizaticn {0}

b General

~ Appearance
" Appearance -style item BackwardNavigation — : [1]
¥ Background -altemative colar HmButton Mane |2 Pro
» Back d - col HmiRoundButton N = =

ackgreune -eater one J Properties H Events ” Texts ” Expressions ‘
b Border -alternative celor Nene
b Border-color ForwardNavigation Hone pBpaEYTve
D ol it Centerhlavigation m
QICERCT SimpleButton I3 Name Static value Dynamization (0}
» Focus -showvisual Mene
HelpButten b General

» Font \WamingButen ~ Appearance
D_Reia it -Gl e StopButien o Appearance -style item HmiClock
EROBSCItY simpleButtonRounded hang » Background - alternative color one

~ Format SquareButton » Background - color HmiDigitslClock one
» Spacina - = = = —

Figure 3-13 Change the style item of system and customized screen objects in engineering

Custom Style
Define a custom style instead of using Faceplates for single object configurations, using the @
currently available capabilities of the WinCC Unified Corporate Designer.]

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 29

Best Practices of Screen Engineering

3.1.2. Tidy up the Screen / Observe System Limits

As you've already seen, there are elements that have more rendering effort and elements that require less. In any case,
every element on a screen affects the loading time and there are also system limits defined that must be observed. To

achieve the shortest screen loading time, especially shortly before a project is used as productive, all objects that were
generated only for the implementing phase for debugging or other supportive reasons, should be deleted again.

e Delete unused objects that are in the background or not visible
e Delete unused objects that are out of the range of the screen. There is also a task card in the layout section available,
that indicates the objects out of range.

Options

Hex) B I USA S

| Layers

~ [Screen_1 ~
w = Layer 0 7w

) ' A Tex_1

Text : @ Circle_1
: : Layer_1
Layer_2
...... i Loyer 3

...... iy
~

CICRCNC)

l=
> | Grid
~ | Objects out of range

Name Position
Circle_1 ¥=1922,Y=463
Text_1 X=1929,Y=157

[siser &= anofey Uz| xoujoor 2

[surppy] seneian

Figure 3-14 Task card objects out of range

System limits
Delete unused and invisible objects to achieve a lower loading effort

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 30

3.1.3.

Best Practices of Screen Engineering

Usage of Screen Windows

Screen windows are often used to create a screen layout and to separate individual content from content that is apparent
for more views and does not need to be loaded for each screen change (e.g., Header). Also, for pop up screens they are
applied. To clarify when to use a screen window as a pop und when to configure it already in runtime, follow the flow
chart below. The recommendation is only in terms of a good engineering. Keep in mind that screen windows in general
have a different behavior as by system function OpenScreeninPopUp generated popup screen windows regarding zoom,
scroll, position, screen layer and live time. So, the specific use case can require explicit one of the implementations.

Screen content is separated
in an own screen window

Put the content

in a faceplate
Yes

Does the

content
need data
through an

Put the content
in a screen

interface?

Is the
screen
window /
faceplate
visible at
runtime
start?

Configure the
screenwindow
on the screen

Does the
screen window
| faceplate
item it self
require
dynamizations
and complex

configurations
?

Yes

visibie

Configure the screen window / facepalte in
the engineering, but only set the screen
property, when the screen window is set to

Create it at runtime with
the system function
OpenScreeninPopUp /
OpenFaceplatelnPopUp

Dynamize the
screen property
and do not use
multiple screen

windows

Are there more
screens shown

with the same

configuration
but at different
states?

Finished

Figure 3-15 Configuration of screen windows

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 31

3.1.4.

Best Practices of Screen Engineering

Screen Object Visibility

If the visibility of a screen item is dynamized, set the static value to false, especially when it can be assumed that the used
dynamization, e.g., tag dynamization causes an invisible object during screen load.

v 1unnes
v Miscellaneous
» Connection quality-show
» Connection status
Name
» Read-only
Tab index
Tooltip
Visibility

| v -

9] None
None
Text box_Notifi_Rec...
Q None
0
None

[j Tag

[+

¥ Miscellaneous
» Connection quality-show
» Connection status
Name
» Read-only
Tab index
» Tooltip
» Visibility
¥ Security

Figure 3-16 Static value for Visibility if the item is assumed to be invisible at screen load

3.1.4.1.

the same Condition

Description

[None

None
Text box_Notifi_Rec.

M None

0

g] Tag

The visibility of more than one screen items needs to be changed in runtime by the same condition.

Solution 1

None

4

Use Case: Visibility Dynamization of multiple Screen Objects by

If the visibility of multiple objects is changed depending on the same condition, define one tag to dynamize the visibility

of all objects together.

J Properties || Events

|| Texts || Expressions |

|_0, Properties |Ti, Info i |

teElvre
Mame
fx search
» General
» Appearance
» Format
> Miscellaneous
» Connection status
Layer
Name
Tab index

dzali

e Dynamization (1}

[=] [

Static value

[=] an

None

Layer_1
Graphic view_1
o

ne
| PTes

b Visibility
SECUrr

» Size and position
Figure 3-17 Runtime visibil

ity of a screen object

Tag

Process

Tag:

ItemnVvisibility

PLC tag:

Address:

Type Condition

@None
ORange

() Multiple bits
() single bit

Bool

2. Prope

Properties " Events

Activated
Deactivated
D ———
Press key
Release key
Click right mouse bu...

" Expressions |

||Texts
Tt T BE & X

Mame
¥ InvertBitinTag
Tag
Bit number:
<Add function=

Figure 3-18 Toggle object visibility

Entry ID: 109827603 |

V2.0]06/2024

Value

ItemVisibility
0

© Siemens 2024 | 32

Best Practices of Screen Engineering

Solution 2

If only the visibility is changed depending on the same condition, move all objects in one layer and dynamize the runtime
visibility of the layer. The visibility of the layer can be changed also in runtime by scripting.

‘_0, Properties ”"_L, Info & ”i Diagnostics ” Plug-ins |

J Properties ” Events ” Texts || Expressions ‘ i
i -— y A, !
aEvVyae
Mame Static value Dynamization ... Layers
} Appearance E
Name Runtime visible Minimum zoo... Maximu.._
» Format
¥ Miscellaneous Layer 0 =)} 1% 800% E
» Background graphic None = Layer_1 =] 1% 800%
» Displayname None Layer_2 =} 1% 800%
¥ Layers 32 itemns Layer_3 il 1% 800% 5
+ [0] Layer Layer_0 Layer_4 il 1% 800°%
» Maximum zoom factor 800% None L Layer 5 =) 1% 800%
» Minimum zoom factor 1% None [Layer_6 =] 1% 800%
L layer? =] 1% 800%
me Layer O
v
» Runtime visible [none r Layer 8 =] 1% 800%
T Layer_9 =)} 1% 800%
aYyer Layer_1 E
b [2] Layer Layer_2 Layer 10 1% 800%
Lawar 11 = o anna

Fi

gure 3-19 Runtime visibility of a screen layer

= Global definition ﬂ Synchronous

.l export function Sc:een_]._,n:,ntextTai:pe:l{ir.em, x, v, modifiers, trigger) |

[X]

3 S:reen.La}-‘e:s{""J.
i_l i = MaximumZoom Fs
k=1

= MinimumZoom

=] Name

=] Visible

Figure 3-20 Access layer visibility in runtime

Solution 3

If there are more properties that have the same behavior or condition (e.g., background color, authorization...), group the
objects and configure the property change for the whole group at once.

= il =
V|Layers
~ [|Screen_1
v Z Layer 0
A Text_1
@ Circle_1
'-G_E,Grcupj
@ Cicle_2
= Slider_1
) Clock_1
i | | »[[20% | = Layer 1
‘3 Properties ||11. Info i"i Diagnostics ” Plug-ins | = Layer 2
= Layer 3
J Properties " Events " Texts ” Expressions | _ - -]
itzEv e ELayer_z
NamME | Static value Dynarmization (0} ; i?
- Iscellanecus
= 3
» Interface Layer_ﬂ
Layer Layer_0 ~ |§Gf|d
Blarn, [ot? ||n_1
» Visibility ™ nene Layout mode
Ecurt eSnapm\ines

Figure 3-21 Visibility dynamization of a group of screen items

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 33

Best Practices of Screen Engineering

Visibility of screen items
If the visibility of more than one item is dynamized by the same condition, put them together @

in a group or layer and dynamize its visibility.]

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 34

Best Practices of Screen Engineering

3.1.5. Unified Controls

Unified controls make it much easier to implement common use cases such as alarming, reporting and trend control.
Nevertheless, there are also aspects in this area that should be considered during use.

3.1.5.1. Use Case: Different Settings in Runtime for Unified Controls

Description

There are lot of configurations that can be done in the engineering for the Unified Controls. Sometimes a Control is
needed in Runtime with different settings. Due to the very limited possibility of dynamizing the controls in the former
WinCC Basic, Comfort and Advanced projects, it was common practice to place several statically parameterized controls
in the screens of those projects and to make them visible alternately at runtime.

WinCC Unified provides very extensively configurable and dynamizable controls, so that the requirement to make various
settings available at runtime can be met by implementing and controlling a single control.

Solution

Change the properties in runtime and do not configure multiple controls or even change the screen to realize different
settings. Therefore, use the system function “SetPropertyValue” or the object model “Screen.ltems(« Iltemname »)”. The
name of the properties can be easily copied in the engineering from the properties tab.

Properties ” Events || Texts ” Expressions | | Properties | Events | Texts | Expressions |
= 1A = A
t TIEE® X saEll
Mame Static value Dynamization (0}
et Name Value W <search» =] i [=]
Deactived Perfarmance ResetPerformanceScreenTime ~ General
itnf Click left mouse buttors "= SetProperyvalue »Alarm source P =] Hene
Press key b Screen object path Alarm control_1 D LT, 7 Remaove from favorites
5 » Systems
Release key i Screen object property name AlarmSourceType - =
Click right mouse button | Value 1 AppRamnos,
b L » Acknowled alérm o None
F ¥ FPerformance.CalcLoadTime Appesrance - style item HrmiAlarmCont._.
performance (optional) 1 » Background - color []204.204,.. None
<Add function » Flashing - suppress [none
» Flashing rate -reset Medium None

w = Global definition 3] synchronous

t function Button 5_OnTa

cers (" Hazm conerol 11 |

B X ¢° G

{item, x, y, modifiers, trigger) {

W e

AcknowledgmentFlashingRate
ActiveAlarmsViewSetup
AlarmDefinitionviewsetup
AlarmSourceType
AlarmStatisticsSettings
AlarmStatisticsView
AlarmView

i i i i

AlwaysshowRecent

Figure 3-22 Accessing Unified control properties

All accessible properties can be found in the WinCC Unified object model directly in the TIA help or on the SIMATIC HMI
WinCC Unified V19 - Programming reference on SIOS.

Unified Controls
Reconfigure the control in Runtime, when different settings are needed, instead of having @
multiple controls.]

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 35

https://support.industry.siemens.com/cs/ww/en/view/109896132/150794106635
https://support.industry.siemens.com/cs/ww/en/view/109896132/150794106635

Best Practices of Screen Engineering

3.1.5.2. Use Case: Alarm Control

Description

For accessing alarms in general an alarm view is provided. This control comes with a lot of functionality as well in the
engineering to configure but also in runtime. Additionally, there are also a lot of system function, to access the same
functionality by scripting, without the Unified control.

Solution

As we in general recommend designing a screen layout with screen windows (see chapter 3.7.3 and Figure 2-2), there
are screens that change the content and screens that remain. The alarm control belongs to the screen items with a huge
footprint (see chapter 3.7.71 and Figure 3 2) therefore it is recommended to put it in screen windows, that are not
reloaded that often like e.g., the header. Since these screen windows like the header are not that big, you can configure
the alarm view as an alarm line with the following steps:

1. Use the simplified appearance style

J Properties || Events || Texts || Expressions
sy e
Mame Static value Dynamizaticn (0}
b General

¥ Appearance

b Acknowledgmentalar.. Medium Mone
Appearance -style itern | HmiAlarmCeontrol |v |

b Background - color HmiAlarmControl MNone

b Flashing -suppress simplifiedAlarrmControl

T

Figure 3-23 Simplified alarm control style item

2. Set the window settings to “always on top”

J Properties " Events " Texts " Expressions |
PaEVY®
MName Dynamization (0}
b General E
> Appearance [[Ishow heading

[show border

» Acknowledgmentalarms -fla..
Appearance - style item IM
2o Can be sized

» Background -color [can be moved [
¥ Flashing -suppress [lcan be maximized A
» Flashing rate -reset [Fcan be closed H
» Focus -show visual [Always in parent
I)‘-.Iwa)fs on top - I MNone E

Figure 3-24 Alarm control window settings

3. Set sorting direction to ascending

b General

b Appearance

* Format
b Alarm rolore -0 cne
1
b Sorting direction -default Ascending ﬂ one IE]
L A I

b Alarm statistic - settings

b Alarm statistic - view

Figure 3-25 Alarm control sorting direction

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 36

Best Practices of Screen Engineering

4. Go to Miscellaneous > Alarm view > Header-settings and change column header to “None” and row header to “None”

» Gnd hines -wisibility Vertical Mone
¥ Header -settings
I » Column header "Mone | MNone
» Column width - change I M none
» Columns -change order M Mone
ﬂ ¥ Font
» Header-background I:l 230, 230, 235 Naone
| » Header-foreground - 0,0,0 Mone
» Header-line color 196, 196, 201 MNone
N I » Row header b MNone

Figure 3-26 Alarm control column and row header

5. Go to Miscellaneous > Alarm view and collapse the scroll bars

P HEAOET - SETNGS

" Horizontal scroll bar-visibility [EelllETE==0] one
¥ Row height T20 one
» Selection-background color [] 125, 205, 245 MNone
» Selection - border color -33,158,221 MNone
» Selection - border width 2 MNone
» Selection -foreground color -0r 0,0 MNone
¥ Selection - mode Single MNone
b Selection -select entire rows B Mone
b Sorting -allow [rone
b Vertical scroll bar -visibility ICCI”EpiEd one

(3 Al rmm e e Rlms m i e Flmmm

Figure 3-27 Alarm control horizontal and vertical scroll bars

6. Adapt the size to one or only a view lines

Alam,Line

SystemNotificatic winccunified

AlarmView

System/HMIiUser Script Debugger | 12/6/2023 12:49:4 12/6/202312 Incoming

Alarm class Origin Area Alarm text

SystemalarmWwitl

Systemalarm wine
SystemNotificatic winccunified

SystemMotificatic winccunified

Wom o o kW o

&l

Feagd =
z

SystemlEMIRunt Computer? (winc

ified:HM System/HMIDrive Computer? {

2 EE BRI

tion time Raise time

023 1:39:4 11

winc 121612023 12:49:4 12/6/2023 12
System/HMIiSche Script Debuggeri 12/6/2023 12:49:4 12i6/2023 12
SystemiHMIIUser Script Debuggeri 12/6/2023 12:49:4 12/6/2023 12

Status text
Incoming
Incoming
Incoming

Incoming

Figure 3-28 Alarm line vs Alarm View

If the alarm view with the whole functionality is necessary, show it as a pop up on demand.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 37

Best Practices of Screen Engineering

3.1.5.3. Use Case: Alarm Line Custom Solution

Description

For accessing alarms in general an alarm view is provided. As mentioned before (Use Case: Alarm Control), when this
information needs to be displayed in a permanent visible screen window, i.e. the header, the simplified appearance style
is a good solution. But this is not recommended if the alarms need to be displayed in a screen that is getting reloaded
often.

Solution

Using an Alarm Line to display only the latest triggered alarms (i.e. only 3 out of 8 pending alarms) can be a good solution
for avoiding using an alarm control when you do not need all its functionalities. This is an open-source scripting solution
provided free of charge via Github and is a good option if you only need to display the alarm name, raise time, status and
address of the latest alarms. You can implement the Alarm Line custom solution with the following steps:

1. Create a new Global Module in your TIA Portal project and copy the code from Alarmline.js (lines 1-171) to the Global
definition area. Here, the Alarm Manager class is defined, and it has several methods and properties (initializes the
instance of the Alarm Manager with the given options, starts the alarm subscription, sets the sorting order and stops
the subscription)

2. Add the new function “UpdateActiveAlarms” and copy the corresponding code from Alarmline.js (lines 174-201). This
function will update the alarm tags based on the provided array of alarms. It creates a tag set and updates the values
based on the alarms.

3.
= .
* |5 Alarmline

“b' Add new function

|| Global definition area

[m| UpdateActiveAlarms
4. [_ =8 P - -

Figure 3-29 Global modules of the custom alarm line solution

5.

6. Create a new Scheduled task, i.e. “AlarmUpdate”, and select the tag “@SystemActivationState” as trigger. This task will
update the alarms, it starts the alarm subscription based on the system activation state.

7.
AlarmLine » HMI_1 [MTP1200 Unified Comfort] » Scheduled tasks
MName Trigger Description Comment
E AlarmUpdate Tags B Execute as soon as one ofthe trigger tag...
Add new
|3 Properties ""_1, Info ||i Diagnostics
J Properties " Events ” Texts
General
Name |E|armUpdate | Triggers |Tags ‘vl
Description |Execute as soon as one of the trigger tags was Tag
changed. s P rr——
SystemActivationState |_|
AOOTTE
8.

Figure 3-30 Scheduled Task of the custom alarm line solution

9. Use the code from ScheduledTasks.js in the Event > Update of your newly created task. In the Global definition, copy
code from lines 1 to 9 and, for the event itself, use lines 11 to the end.

10. For the visualization of the alarms, you can configure it with basic objects and elements from the toolbox (see
Demoproject)

11. Create the required HMI tags for displaying the Alarm Line values and dynamizing properties. The number of tags
needed will vary depending on the maximum number of alarms you want to display at the same time.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 38

https://github.com/tia-portal-applications/Custom-AlarmControl-Code
https://github.com/tia-portal-applications/Custom-AlarmControl-Code/blob/main/src/Alarmline.js
https://github.com/tia-portal-applications/Custom-AlarmControl-Code/blob/main/src/Alarmline.js
https://github.com/tia-portal-applications/Custom-AlarmControl-Code/blob/main/src/ScheduledTasks.js
https://github.com/tia-portal-applications/Custom-AlarmControl-Code/blob/main/Custom_AlarmLine.zap19

Custom_AlarmLine » HMI_1 [MTP1200 Unified Comfort] » HM tags » AlarmLine [24]

SEXIE
AlarmLine
Name a Data type Connection FLC name

< Alarm1_Address Wstring |i| <Internal Iag)[:]
-a Alarrmi_AlarmText Wstring <nternal tag>
-a Alarm1_BackColor uDInt <nternal tag>
< Alarm1_DateTimeRaised DateTime <nternal tag=
< Alarm1_Flashing Bool <nternal tag=
< Alarm1_MachineUnitAssyPart WString <nternal tag=
< Alarm1_Status W5tring <nternal tag=
- Alarm1_TextColor uDInt <internal tag=
<a Alarm2_Address WString <internal tag=
<a Alarm2_AlarmText WString <internal tag=
< Alarm2_BackColor UbInt <nternal tag>
< Alarm2_DateTimeRaised DateTime <nternal tag=
a Alarm2_Flashing Eool <nternal tag=
a Alarm2_MachineUnitAssyPart WString <nternal tag=
<a Alarm2_Status Wstring <nternal tag=
< Alarm2_TextColor ubint <nternal tag>
-a Alarm3_Address Wstring <nternal tag>
< Alarm3_AlarmText Wstring <nternal tag=
< Alarm3_BackColor ubint <nternal tag=
< Alarm3_DateTimeRaised DateTime <nternal tag=
<a Alarm3_Flashing Bool <internal tag=
<a Alarm3_MachineUnitAssyPart WString <internal tag=
<a Alarm3_Status WString <internal tag=
- Alarm3_TextColor uDInt <nternal tag=

<Add new=
Fal

12.

Figure 3-31 Custom Alarm Line Tags

Best Practices of Screen Engineering

13. With this approach, there are some parameters that can be modified to better suit your requirements:

¢ Max. number of alarms : the maximum number of alarms displayed at once can be modifed in the Global
definition of the Alarmline global module, in line 164. Take into consideration that, if more alarms are to be
displayed, more HMI tags and basic elements are needed for displaying them.

Custom_AlarmLine » HMI_1 [MTP1200 Unified Comfort] » Scripts » Alarmline » Global definition area

MR

L Trouln oy -y
146 if (timerFlag

147 this.#send

141 timerFlag =

149 timerFlag = null;

150 if (this.#hasChanged) [
151 this.#hasChanged = false:
152 this.f#throttled

153 }

154 1, delay):

155 1

156 }:

157 1

158}

159

1&0

181

162

163

I.L:'4 const maxhlarmbineRlarms =

| 1e3 const TagoeCTags =

Figure 3-32 Custom Alarm Line: MaxAlarmLineAlarms

e Alarm language: in the scheduled task event code, the language used for the alarms can be set by changing the
value (decimal language ID) in line 7. In this example, “1033" refers to English (here you can find further
language IDs). You can also use the value 127", which is the default languege configured in your HMI.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 39

https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/available-language-packs-for-windows?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/available-language-packs-for-windows?view=windows-11

Best Practices of Screen Engineering

Name Trigger Description Comment
5] AlarmUpdate Tags B Execute as soon as one of the trigger tag...

<Add new=

Properties Events ” Texts |

: e T
5 Update f. m "Blarmlind";
3
4
< I}
e T
1 export function Task_RlarmUpdate Update() |
3 if (Tags('[fSystemActivationStatd').Read() === 2) |
4
5 if (lalMgr) {
& alMgr = new Eodule_alarmling.f—'.
7 language: |1
g filter: alarmlineFilter,
m 9 sortOrderDescending: Tags('Eorr.()r:derDeﬁcendina').Read(),
: 10 callback: mule_alamlinﬂ.'];::l elctiv rms
il 11 I3
: 12 alMgr.StartSubscripticon();

Figure 3-33 Custom Alarm Line Language

Alarm filter : in the global definition of the scheduled task,the filter for the alarms is configured. This can also be
modified so that it fits your needs.

Update interval (optional): in the Scheduled task Event code, you can add the parameter “delaylnMilliseconds”
to the Alarm Manager() call. The suggested time is 250ms or more, since below this value there is no real
benefit. Notice that, when setting it to a higher number, it does not mean that you will not be updated in time.
This paramater works as follows: imagine that we have set 10.000ms as delay, whenever there is a new alarm
raised it will be sent directly, as soon as possible, to the visualization. If after 2s another alarm is coming, it will
not be sent to the visualization directly, but it will be visible after 8s (10s delay — 2s = 8s). This will allow us to
see the alarms in time and also prevent overflowing of the system. This is an optional parameter, so you can
choose the delay you prefer or not use it at all.

Name Trigger Description Comrmment

E AlarmUpdate Tags lz‘ Execute as soon as one of the trigger tag...

<Add new=

Properties Events || Texts |

'_-'-;'E & Global definition E$| synchronous I:mi ¥ ¢e (;9
E Update i import * as h’u:rdule_alarmlinel 1 "Pklarmlinel":
£ 11
1 export function Task RlarmUpdate Update () {
3 if {TE.:JS{'ESystemActivationState{').Bead() === 2} {
4
5 if ('alMgr) {
] alMgr = new .é'.e.:r:.‘fe.ne.ger{{
7 language: 1033,
g filter: alarmlinsFilter,
g sortOrderDescending: TE.:JS{'EortOzﬁerDescendina' Read (),
10 callback: module alarmling.Updatelctivellarms,
|
N 12 1
: 13 alMgr.StartSubscription();
N 14 }
L4 1 - 11— v

Figure 3-34 Custom Alarm Line delay in Milliseconds

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 40

Best Practices of Screen Engineering

3.1.6. Graphics and SVGs

Additionally, to all the textual information, an HMI usually also contains images. These can be small icons, bigger images,
or animated graphics / dynamic SVGs. Depending on the use case there are also recommendations on how to use images.

Image format:

e JPG (joint photographic experts group) are recommended for UCPs as the format reduces the size of large files. So
there is also a loss of quality through the compression, but the files can also be decoded faster. When a graphic is
needed in a high resolution, a JPG can also be used in a high quality. JPG does not automatically mean less quality.

e PNG (portable network graphic) is a raster graphics format with lossless data compression. Therefore it is
recommended when transparency is required or when exact pixel accuracy is important.

e SVG (scalable vector graphics) is used for displaying two-dimensional graphics, diagrams and illustrations on websites.
As a vector format, SVG images can be scaled to different sizes without affecting the resolution. Therefore, this format
is recommended when high quality zooming is required or dynamic SVGs are used. In other cases, it is better to
convert the file in the size used to a PNG or, if no transparency is required, to a JPG, whereby the largest size used for
multiple use should be selected.

NOTE The formats can be divided into two groups:

e Raster graphics format, that relies on pre-rendered bitmaps and is therefore less demanding on
system resources and recommended as a runtime format (JPG, PNG)

e Descriptive graphics format, that uses code to specify how the graphic should appear. It will only
be rendered during Runtime, which makes it easily adaptable in size (e.g. when zooming), and well
suited as a primary library format (SVG)

Graphics .
Regardless of the graphic format, the file size should not be larger than the maximum |®

size [resolution that is needed for this HMI]

Graphics Format ;
O

The recommended order for selecting the graphic format is]
1. JPG]
A 2. PNG
3. SVG
If there are further requirements for the graphic, still the SVG can be the most suitable. But select it
carefully!

3.1.6.1. Use Case: Visualize Patterns and composed Objects

Description

Some objects or patterns can be created by multiple objects. Furthermore, these combined objects might be reused
multiple times on the screen.

Solution

Do not create pattern by the use of single items but combine them to one image. This reduces the number of objects on
the screen. Even if the objects are basic like rectangles, the combination to one object reduces the rendering effort. When
dynamizations are necessary create a custom dynamic SVG (see next use case). This also reduces the number of object
containers on the screen and helps to comply with the system limits.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 41

Best Practices of Screen Engineering

——r : ::LVI.ayers] e . =
A | B = —n— ol 1
— 3 — I]
—— ¥ = Layer 0 e T
— # Line_2 —
— A b_explanationHeader —
—— B i e | ..
— A b4_excianation |) (N IR
———— y T
R o 5 - T 3 S e el
L L . L P = Layer 4 g ¢ s .
[<[m] [>]155% [-] FTRTS: careTTen = Layer 5 [Pro |3i pman:s “buln:ﬂ Iﬂu Zlagnm,m; |
= Tt vent: Xt xpression:
|'G Properties I‘il' Info "ﬂ Diagnostics j ;’ :’j’:{ in f:; = = e o
Figure 3-35 Pattern as SVG example
Combined objects
Reduce the number of elements on the screen, by creating SVGs and dynamic SVGs of @
combined objects]

Also use graphics in their original resolution and only as large as it is necessary.

3.1.6.2. Use Case: Composed Objects with Dynamizaton - dynamic SVG

Description

Some illustrations with a dynamic visualization can be either created by the composition of multiple dynamized screen
objects or directly by a dynamic SVG.

Solution

As already described in the previous use case, to minimize the number of screen items per screen, composed objects
should be combined to one object container. There are dynamic SVGs available for a wide range of standard components
in the IndustryGraphicLibrary. Before building your own component with several screen items, check if there is already a
solution in the graphic library. Through the interface some properties can be configured and changed in runtime
dynamically. More information about the usage of the dynamic widgets can be found in the Unified V19 Manual.

Figure 3-36 Industry Graphic Library

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 42

https://support.industry.siemens.com/cs/ww/en/view/109828368/162074449419

BEETr 4=
= =] T
|~ Appearance ~
| » Focus-show visual M none N
B > opciy . oo
|~ Miscellaneous =
_» Connection quality-sh... ™ None
W D= =
[T
| | BasicColor []220, 248,255 None
= ContrastColor [] 240, 248,255 None
|| Fositionx 50 None
o Positiony’ o hone
] ToolPosition o None
|| Toolselection o None
Bl .
[| Name DynamicsVG_1 v

Figure 3-37 Robot dynamic SVG from Siemens Graphic Library

~ | Dynamic widgets

(s
- B IndustryGraphicLibrary
% Accessories
% Animation
|1‘| Blowers
P_"l Boilers
%) Brewery
%] Buildings
%] Cabinets
% Chemical

Conveyor2... Conveyor2... Conveyord..

N omw =

ConveyorC... ConveyorC... Conveyorl...

B ¥ 8 i

ConveyorR... ExtendedP... Pusher

Conveyord...

ConveyorR...

RetractedP...

~

Figure 3-38 Dynamic Widgets Conveyor examples

Entry ID: 109827603 | V2.0 | 06/2024

Best Practices of Screen

| IFEquipment
[Material_Handling

1 mixers

% Motors

4 Nature

4 pipes

] Pipes-Overlays+Aows
) Production_Line_Station

Fortalkran... Fortalkran_.. Robot 01 Robot 02

& =

Robot 03 SCARA Robot SCARA Rob...

Engineering

© Siemens 2024 | 43

Best Practices of Screen Engineering

3.2. Use of Dynamizations

In this document different types of dynamizations are mentioned.

3.2.1. Simple Tag Dynamization

A tag dynamization is shown in the following figure. It can have types of configurations. You can take “None” to directly
transfer the tag value to the property value. With the “Range” type, a condition can be specified for several tag value
ranges and linked to a property value. The “Multiple bits” type makes it possible to change the property depending on
various single bit positions of the dynamization tag. And finally, the “Single bit” type is limited to one bit of the
dynamization tag, to specify conditions for the property.

Every time the tag value changes, the property value is adapted.

‘_Q, Properties H"b Info (i ||i Diagnostics || Plug-ins

J Properties || Events || Texts H Expressions |
a — M
LEEVTvwe Tag
Name Static value Dynamization ...
= 7 oy = Process Settings
~ Appearance [~]
Appearance -style item HmiRectangle Tag: |myTag [&l-=] [0 use indirect addressing
= o o Meo, = PLC tag: A ™ Read-only
» Background-color []255,255.0 [Tag - e =
¥ BCRGrOUNG ~ T patErA So1a TBTE ||
» Border -alternative color[| 255, 255, 255 None 4 Z
S e T Hane il = Condition Background - colar Flashing | Alternative value Frequency
i 0 []204,255,200 [=]no [=] =55 tedium
» Border -width 1 None o O None
v Comers 1-100 Il 255.0.0 No []
omers @ Range Add ne
3 Fi::‘d\recltinn Bottom to top None O Multiple bits —
b Fill level o Mong
single bit
v Fill level -show [Nene Osingletit > []
» Focus -show visual ™ none
» Line -type Solid None
(<l [T B < [T s

Figure 3-39 Tag dynamization

In this context it is important to mention, that there is also a “Change” event. Through this event, an additional script can
be executed If the property is changed at runtime, e.g., if the tag value of the dynamization tag is changed. That happens
when this event is triggered during the screen load process can be seen in detail in Figure 2-9.

€, Properties |4 Info

J Properties || Events || Texts ” Expressions |
taET e /] |21 Global definition #f] Synchrorous = € X ¢° Ga
s Staticvalus ? Dynamization (2) ; export fumction List box 1 FrocessWalue OnPropertyChanged(item, value) {
G |
Enera 3 for [let SelectionItem of item,delectionltems){
Process value Tag 4 if (SelectionItem.Isfelected) {
Change l:l Feript E 5 Tags [""J Wrice(ZelectionItenm. Textc):
Quality code... Mone 3 break;
b Selection iterns 3 items N 7 }
» Appearance M g 1
b Format > s
» Miscellaneous il R

Figure 3-40 Tag dynamization — change event

3.2.2. Script Dynamization

The second dynamization is a script dynamization. The return value of this script defines the property value after the script
is executed. To execute the script a trigger needs to be specified. Information about triggers is given in section 3.4.1.

Script Triggers.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 44

Best Practices of Screen Engineering

PP e T e
P ——
J Properties H Events " Texts H Expressions ‘
BpaElée E | &) Global definition [i] Synchronous | & ¢ 6o Troger XD -]
e — F Dynamization (1) i eXport function btnOperatorLodo . Trigger(item, triggerDataSet) [Tag
W Search- [=) A [=) A Dot e @usertiame B
b FPosition -top 2 Mene 4 ler username o nsne
v Miscellaneous B
» Connection quality-sh... M Mone 6 if (username —
b Connection status None 7 walue = false;
Layer Layer_0 8 }oelse{
Mame btnOperatorLogoff L E value = trus;
Tab index o il L '
I_r_mw — Bl 12 return values
» Visibility ™ script 2l {4 7
¥ Secunty
~ Size and position
» Position - left 885 MNone »
» Fosition-top 225 None
» Rotation -angle o None
b Rotation -pivot point Absolute to center None

Figure 3-41 Script dynamization

3.2.3. Expressions

The Expressions are another way to dynamize a screen item property. To configure them, there is an additional tab
available. With an Expression a condition based on multiple tags can be defined and multiple properties can be changed
by the conditions.

e The Expression is evaluated when one of the tag values changes.

e Properties change as soon as the result of the Expression changes.

¢ If none of the conditions returns TRUE, the default value is assumed.

e If multiple conditions are defined, the first condition in the list that returns TRUE is applied.

e Expressions that cannot be evaluated are skipped, e.g. because of a syntax error or a tag that cannot be accessed.

x| m

JPeren:ies ” Events ” Texts I| Expressions |]

iZaEyde

Mame

Static value # Dynamization ...

2]
Appearance -style item HmiRectangle

A Eaocl 4 It £ 0255 0 kL r
| b Background-color [|255.255,0 [~ TR]|

Tare

~* Appearance

b Border-alternative cu\orl:l 255, 255, 255 Nene :
b Border-color Il 125. 125,133 None L
» Border - width 1 None P
N » Corners
|3 Properties H"_L, Info i "i Diagnostics " Plug-ins
| Properties || Events ” Texts || Expressions
B Add property % Remove property A Moveup F Move down
Condition Background - color Background - c.. Background - col... | Background . Visibility
Default I:l;f-:- 255,0 Mo - 0 Medium
[255.255.0 [=] o 5] | Medium [=] =]
@WMDORNOTXR () + — % [/ A % > < 3=<(=== |= v gitwize
‘myTag'AND Visible'| ~
v

Figure 3-42 Expression as a dynamization

Be aware of the order in which the Expressions are defined. They are executed from top to button and once a condition is
true, the others are not executed anymore. In the following example, the order must be as follows. If it is defined in
reverse order, the AND condition is never evaluated, as the OR condition is always fulfilled first.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 45

Best Practices of Screen Engineering

|_Cl. Properties [Ty Inf

| Properties || Ewvents || Texts || Expressions

K Add property Rernave pr y
Condition Background - color Background - coler - Fla.. | Background - color -» Alt.. | Bt
E.DE":L|'. E_ 255, 255, 0 Mo Ill-‘:'j"""‘ I,
"TagA'AND TagB' []2s5,255,0 Mo [| .0 M
TagA'OR'TagE' B 0. 255. 0 Mo Il z55.0.0 M

Figure 3-43 Expression execution order

(V19\
3.2.3.1. Use Case : Dynamize a Property depending on Single Bits *=

Definition
Some Use Cases require to dynamize a property depending on single bits in a word. Previously, this had to be done with

scripts like the following example shows. A different color value is returned depending on bits.

J Properties " Events ‘l Texts " Expressions ‘
BaE{lte [} | £ Global definition [E2] Synchronous 5 (1] ¢° 6o Add trigger %
Name Static value Dynamization (1 1B sy EEpEEEEEE) Trigger Tags
- - Eﬁ-” v [0} 5l E R . o) iog g [-]
~ Appearance 3 :‘;3"12 =
Appearance -style item HmiRectangle 5
- o T . Add new

» Background-color [] 181,190,197 E]ﬂ‘] 7
¥ Background -l pattern 501 Hone 8
» Border-altemative color[| 255, 255, 255 HNone 3 g
b Border-color I 125125, 133 Hone 3 o
» Border-width 0 Nane : .
» Comers 13
» Fill direction Bottom to top None
v Fill level 0 Hene m
b Fill level -show [Mene | [
» Focus - showvisual ™ Hene Y
» Line-type Solid Hone M
» Opacity 1 Hone

~ Miscellaneous
» Connection status None

Figure 3-44 Script to dynamize property depending on certain bits using ShiftAndMask()

Solution

pd2

(V19
Use bitwise operations in Expressions\i/ to replace the script dynamization on the property. The SR8()-Operator is used
to shift the bits to the right and the AND8()-Operator is used to mask.

J Properties || Events ” Texts || Expressions |
ptaEllre
Mame Static value & Dynamization (1)

"l_f;(Searchs B All E All E

v Appearance

[2]

Appearance -style item HmiRectangle
} Background -alternati... 0 255 0 None

[seckground colr [101,150,157
Background -nll pattern | Solid None
b Border -alternative color[l 255,255, 255 Naone 3
b Border - color I 125,125,133 Nene 1
b Border -width 0 None
» Corners
» Fill directicn Bottom to top Nane

Figure 3-45 Expression Property

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 46

Best Practices of Screen Engineering

‘ Properties " Events " Texts ” Expressions

K¢ Add property % Remove property & Moveup F Move down
Condition Background - color Background - celer -» Fla_. | Background - color -» Alt. Background - color - Fro.
i Default [181. 190, 197 No W zs5.00 Nedium
ANDB(SRE("Word2',4),3) == 1 [94,209,173 No] um
ANDB(SRE("Word2',4),3) == 2 [] 234, 206,33 Mo] edium
ANDB(SRS("Word2',4),3) == 3 I 222, 56, 88 No] Medium

Add new-

Figure 3-46 Expression with Shift and Mask operators

3.2.4. Further Options

Depending on the property it is also possible to use a resource list or flashing as a dynamization. The flashing option is
available for color properties. The resource list for text properties.

[Properties [%, Info)] 3

J Properties " Events " Texts H Expressions |
Ps=EEYT e Flashing
Mame Static value # Dynamization
v Appearance g [»] Settings
Appearance -stle item HmiRectangle Color:
» Background -alhernativ.. [0 0, 255, 0 Mone L oarses e
b Background-color []255.255,0 [=] Flashing [+ P —
» Background - fill pattern Solid None |
» Border-slternative color[] 255, 255, 255 None . Rate:
» Border -color [125.125, 133 None [
} Border-width 1 Mone il
| » Comers
¥ Fill direction Bottom to top MNaone

Figure 3-47 Flashing dynamization for color properties

<y . .

|3 Properties %y Info i

J Properties || Events || Texts || Expressions |
gV ae Resource list
Name Static value # Dynamization Settings
¥ General E
b _Font Tag: |my‘|’ag ||

b Text Text urce list [~] Resource list: |Button_Show_Hide [A
-
ppearance

Appearance -style item | HmiText

¥ Focus -show visual M none 1
» Foreground - color - 0,0,0 None L
» Opacity 1 MNone il

Figure 3-48 Resource list dynamization for text properties

In general, it can be said that Expressions and tag dynamizations are the preferred solution for property changes. But if a
script can be used to avoid multiple screen objects, scripts are recommended (see chapter 2.2.1).

Dynamizations
Use, if possible, tag dynamization. When more complex logic is required use Expressions. @
Try to avoid script dynamizations! e

Information about the different trigger types (cyclic, tag, alarm, event-driven,...) are documented in detail in SIMATIC
WinCC Unified — Tips and Tricks for Scripting (Java Script).

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 47

https://support.industry.siemens.com/cs/ww/en/view/109758536
https://support.industry.siemens.com/cs/ww/en/view/109758536

Best Practices of Screen Engineering

3.3. Use of Faceplates

Faceplates are used to bring standardization to your projects. If you want to use them, make sure you do configurations
with multiple screen objects. The use of a Faceplate for individual objects, such as a single rectangle, is not recommended
for performance reasons, since the additional overhead due to the interface. Use the WinCC Unified Corporate Designer

V19
for this use case (see chapter 3.1.1.5. Use Case: Custom Styles).

3.3.1. Essential Insights into Faceplate Usage

When using Faceplates, it's essential to pay attention to general project considerations to achieve optimal performance.
Firstly, assess the compatibility of Faceplates with versions prior to V19 and explore reimplementation possibilities with
newer features. Additionally, ensure the following:

e Use the Faceplate in the highest possible version (same as device version)

e Use Faceplates screen objects with sophisticated and extensive logical configuration

e Chose appropriate datatypes in the Faceplate interface

e Keep in mind the system limits \9\ of a screen when creating a Faceplate. Sample calculation for a Unified Comfort
Panel 7-12 inch:

Number of objects per screen for a UCP 7-12": 800

20 Faceplates on the Screen

20 Additional Objects on the Screen

—» 800 - 20 Screen Objects - 20 Faceplates = 760 Objects that are remaining for the Faceplates

—-» 760/ 20 = 38 Objects that can be used per Faceplate in this use case

3.3.1.1. Use Case: Faceplate that is not always Visible in Runtime ™

Description

A Faceplate, which content is only necessary on demand, can be shown as a popup or can already be configured on
screen in the engineering but set to invisible-/.

Solution

Activate the suspendable flag for these Faceplate instances. With this setting the cyclic script or scripts triggered by tag
changed are not executed when the Faceplate is not visible. Not visible refers also to the case that it is out of the current
visible screen area.

|_0, Properties |7 Info |

J Properties || Events || Texts || Expressions |
iZaEV e
MName static value Dynamization (0}

P Appearance
b Format

* Miscellaneous

» Background graphic MNone

» Displayname None

b Interface

b Layers 32 items [
Name Faceplate Suspendible V 0 0. !

| Suspendable =] I

Figure 3-49 Faceplate property suspendable

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 48

Best Practices of Screen Engineering

3.3.1.2. Use Case: Strings in the Property Interface

Description

Within the Faceplate property interface different data types can be selected. For a string there are two options, the
Multilingual text and the WString (configuration string).

E |Visua|ization || Tag Interface || Property Interface "J
S
Mame Data type Data type explanation
Interface_Property_1 Colar |v Colaor
<Add new:> Authorization
Bool
Color
Graphic

Lint (84-bit integer}
| = " LReal (Floating point number}
[
Multilingual text |

Resource list |5 Properties ||"i., Info i ||i Diag
ULInt (Unsigned &4-bit integer}

General Wstring (Configuration string}

Figure 3-50 Data Types for a Property of a Faceplate interface

Solution

If you need a string that is used for a tag dynamization inside a Faceplate type, select the multilingual text. A
configuration string cannot be linked to a property as a dynamization, but only through scripting.

Configuration strings are only recommended for the transfer of configuration settings e.g., trends in a trend control or
alarm filters.

Multilingual strings also have the benefit of saving the text information for the different runtime languages and can be
switched during runtime.

Project library » Types » Motor_FP » V 0.0.2

m | Visualization " Tag Interface " Property Interface U
=527
Mame Data type Data type explanation
Indicator Color Color
TextMultilingual Multilingual text Multilingual text
TextConfigstring | Wstring (Cenfiguration string} El Unicode string; rafjge: up to 16382 characters; can be used for parameterization in scripts; example for inpu
-<sAdd news

|3 Properties Ty Info i) || % Diagnos

J Properties " Events " Texts " Expressions |
iZzaEvV v e Property interface
Name Static value # Dynamizstion (1) B
¥ General E e
- Font Name: “—' |'|
Font Siemens Sans, 21pt, L TextMultilingual)
b ltalic MNone 1
} Name Siemens Sans None
b Size 21 MNone :
b strikethrough None Mone L
» Underline None 3
» Wieight Bold Mone il
b Text MotorName E Propertyinterface E
¥ Appearance

Figure 3-51 Multilingual text and configuration string in Faceplate property interface

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 49

3.3.1.3.

Description

Best Practices of Screen Engineering

Use Case : Dynamic Data Connection for hierarchical Faceplates

Faceplates can be applied to visualize content based on a standardized data connection to the PLC. Although several
Faceplate instances can be displayed on the screen simultaneously with their respective data connection, in many cases it
is sufficient to have only one instance visible at a time and instead dynamize the interface property connection.

Solution 1 - Dynamic interface change using system functions

V18

Until V18 you have to connect the tag properties of the Faceplate interface with a static HMI tag. To manipulate the
interface connection with the corresponding tag you can use the system function SetPropertyValue.

J Properties ” Events || Texts ” Expressions |
sBREN®
Name a Static value Dynamization (0}
l?x Search B All |z| All |z|
P Appearance
» Format
¥ Miscellaneous
» Connection status Mone
Faceplate type TermpControl V0.0.3
b lcon Mone
~ Interface I
C_Dmro\ HeaterControll
fillingCalor 0,161, 209
userRights Cperate Properties Events ” Texts ” Expressions |
tTBEE ® X
Activated Hams Value
Deactivated v SetProperyValue
3} Click Ieft mouse butto Screen object path Faceplate container_4
Press key Screen object property name Properties.Control Tag
R iy Ml value HeaterCantroll
Figure 3-52 Static Faceplate interface connection
. o . . . V19
Solution 2 - Dynamic interface change using tag prefixes

As of V19 it is now possible to use a single Faceplate container to display separate Faceplate instances by using a prefix-
based tag dynamization.

Define a tag name consisting of a static part and dynamic parts as tag parameters. The dynamic parts are tag references

that are replaced in runtime with the current tag values. The resulting tag name is thus dependent on the values of the
tag references.

Especially use this solution, if you want to access complex PLC UDTs that contain much more information than needed
inside of the faceplate. Load each UDT as an own HMI tag instance instead of using multiplexing. Thereby only the
required tags will be refreshed, not the whole UDT structure. For more information regarding the use of multiplexing see
link section Use Case: PLC UDT Arrays with Multiplexing.

J Properties || Events || Texts || Expressions | "
<0 ¢ HeaterContro typeHeatControl HMI_Cennectio... PLC_1
1‘% E E ¥ T < b HeaterContro typeHeatControl HMI_Connectio... PLC 1
e T — 7 Dynarnization () < b HeaterContro typeHeatControl HMI_Connectio... PLC 1
» Appearance - Praefix Int <Internal tag>
» Format Dynamic tag name: |HEaterCUntrU|'Praeﬁx’ ||
¥ Miscellaneous Description: |Defines & tag name which is composed of static parts and tag references. The
Connection stat... Mone resulting tag name is determined in runtime by replacing the tag references with
the current tag values. Tag references must be encapsulated by single quotation
Faceplate type Temp Control V 0.0.30 marks () 9 9 P yingle q
lcon MNone Examples:
- |nterface 1. 'UnitTag'.'MotorTag . Temperature
2_Section['SectionNumber’] Conveyor2 Speed
Control HeaterControl1 ! Tag parameter L
filingColor [0. 151, 209 50 I
User_Rights m

Figure 3-53 Dynamic Faceplate interface

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 50

Best Practices of Screen Engineering

Example:

To access HMI tags “HeaterControl1” to “HeaterControl4” of a user data type “typeControl” via a Faceplate instance, define
another tag (e.g. “Praefix”) as a dynamic part of a “HeaterControl'Praefix’ interface property. Depending on the value of
the “Praefix” tag in Runtime, the resulting tag name of the HMI tag “HeaterControl1” to “HeaterControl4” results in the
Faceplate interface change.

3.3.2. Text Lists in Faceplates

A text list has been configured and is now to be used in a Faceplate. As the Faceplate cannot access this text list directly,
the following explains in detail how to proceed in this case.

The integration of text lists in Faceplates offers a variety of possible solutions, each with its own advantages and
disadvantages. It is crucial to first clarify the purpose of the text list used in the Faceplate.

Analysis:

It is first important to determine how many texts from the text list are actually to be used in the Faceplate and how many
instances of the Faceplate are used in the project.

If the number of text elements to be transferred to the Faceplate is small, there is an optimal solution. In this case, the use
of individual variables in the property interface of the Faceplates offers the optimum solution. Further information on the
procedure can be found under: Use Case: Transmitting a Subset of the Text List.

If there is a need to utilize a greater quantity of texts from the text list, additional considerations are necessary for the
configuration. In this case, a solution with individual variables for each text element of the text site is not an optimal
solution, as the engineering effort increases significantly with increasing text elements and Faceplate instances. A
suitable solution depends on the specific use case.

It must be checked whether the text lists used will differ from Faceplate instance to Faceplate instance of the same
Faceplate. It is therefore examined whether the text lists must be configured dynamically or statically on the Faceplate.

V19
Use Case: Static use of Text Lists

e Astandardized text list is to be used for all instances of the Faceplate.

e The text list serves as the basic framework for all Faceplate instances.

e Further adjustments could be made to the text list, so the texts for all Faceplate instances must be adjusted quickly
and easily.

Use Case: Dynamic use of Text Lists
o Different text lists are required for the individual instances of the Faceplate.
e The UseCase of the Faceplate instance is determined by the referenced text list and its referenced interface variables.

3.3.2.1. Use Case: Transmitting a Subset of the Text List

Description

This use case deals with the transfer of individual or a few text elements to a Faceplate from a configured text list. This
scenario could arise when designing a text list and only necessitating a few elements from it for each Faceplate instance.
A possible scenario for this use case is the control of an actuator using a Faceplate with two buttons.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 51

Best Practices of Screen Engineering

O]

‘ Visualization ” Tag Interface ” Property Interface || Local Tags ” Event Interface

RN S R

Text
‘_0, Properties ”"_1., Info Hi Diagnostics ” Plug-ins ‘
Properties || Events H Texts || Expressions ‘
lev B8 % x
Activated e i
Deactivated

Click left mouse button Button_Left_Pressed

Press key -

] Pros

SetTagvalue
Tag
Value

<Add function>

E Release

ouse button

Figure 3-54 Events for Buttons on the Simple Faceplate

The button setts the variable to true, and then resets it to false upon release.

Pressing the two buttons toggles two Boolean variables between "true" and "false". The action triggered by pressing these
buttons is determined by the PLC code. This flexibility allows the same Faceplate to be used for multiple actuators, such as
cylinders or motors, with the button labels and Faceplate headlines adjusting accordingly.

The list includes all actuators in the system intended to be controlled through the Faceplate.

|Q Text lists | .| Graphic lists

Xy E
Text lists
-~ |Name a Selection Comment
L 0
Text list entries
-.. Default |Value a Name Text
ﬂ O o Text_list_entry 1 Motor_1
ﬂ O 1 Text_list_entry 2 Forward
H O 2 Text_list_entry 3 Reverse
H O 3 Text_list_entry 4 Gripper_1
j O 4 Text_list_entry 5 Open
H O 5 Text_list_entry 6 Close
j O s Text_list_entry 7 ConveyorBelt_1
H O =7 Text_list_entry 8 Faster
ﬂ O 8 Text_list_entry @ Slower
M O o9 Text_list_entry .. Valve_1
ﬂ O 10 Text_list_entry__. Open
H 0 n Text_list_entry .. Close

Figure 3-55 Example Text List for Labeling Control Panels for Actuators

In this scenario, a Faceplate instance is to be created to control a motor. From the configured text list, you now only need
the text elements for the corresponding actuator:

Text lists
- |Name a Selection Comment
1:)/ Tesxt_list_ctuatorControl_1 ValueiRange [=]

I

Text list entries

Default | Value a Name Text

Text_list_entry 1 Motor_1

Text_list_entry 2 Forward
Text_list_entry 3
TER N ey
Text_list_entry_5
Text_list_entry_6
Text_list_entry 7
Text_list_entry 8
9

Reverse

GpperT
Qpen

Close
ConveyorBelt_1
Faster

o~ oaon sl = o

Text_list_entry 9 Slower
a

10
1

<Add news

Text_list_entry . Walve_1
Text_list_entry_

B Text_list_entry_

Open

1 il Pl il sl W P [P
lojolojelolelolold [ofo]e

Close

Figure 3-56 Text Elements for the Simple Faceplate

Solution

In this procedure, the individual entries in the text list that are to be transferred to the Faceplate are transferred as
multilingual text. Therefore, three multilingual text variables must be configured in the Faceplate interface.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 52

Best Practices of Screen Engineering

| Visualization || Tag Interface

+ 7
MName Data type
TextHeadline Multilingual text
TextButtonLeft Multilingual text
TextButtonRight Multilingual text

Aaa news

Figure 3-57 Property Interface of the Simple Faceplate

Faceplate in Popup

|| Property Interface

|| Local Tags

|| Event Interface

Data type explanation
Multilingual text
Multilingual text
Multilingual text

Multilingual text objects cannot be referenced at the interface when opening a Faceplate in pop-ups
and are not suitable for this use case.

The multilingual text can then be referenced directly at the desired properties of the objects. The use of a script is not

necessary here.

o—a—0o
Text I |- { S N N N Text
& [100% -
|3 Properties ||’b Info ||i Diagnostics || Plug-ins |
J Properties ” Events ” Texts ” Expressions |
1A = ; [l f
iz 33 =m " e Property interface
Mame P Dynamization (1} B
Settings
W <Search= F=) A [=] 2
~ General L [~
¥ Content TextHeadline
» Graphic Hons TextButtonRight
N = AU "
b Text E Property interface E
- 134 ll e

Figure 3-58 Text Property of Buttons on the Simple Faceplate

The multilingual text for the label of the left button is referenced here at the "Text" property.

The desired text elements of the text list can be defined on the Faceplate container of the instance by specifying the index
in the interface. These references can differ from one Faceplate instance to another and enable dynamic use of the text

elements.
J Properties " Events ” Texts ” Expressions ‘
A — iy M)
125 EEI W ® Resource list
Mame Static value ¥ Dynarnization (3})
Tl ear Settings
e <search [=] At [=] A [=] :
v Vertical scroll bar-visibility Collapsed None Tag: |“'“j9"—Mjm'CD"‘"DI—HEEdl”"E =
} Zoom -allow [none Resource list: |Text_|i5t_Motorl’_ontroI ‘..l}.:_-
» Zoom -factor 1 None

Miscellaneous
} Connection status None
Faceplate type

¥ lcon

Faceplate_Control_Dynamisch_Textliste ..

¥ Interface
Button_Left_Pressed Motors_Motor_1.motor_running_left
Button_Right_Pressed
TextHeadline
TextButtonLeft

TextButtonRight

Motors_Motor_1.motor_running_right

None

Resource list

Figure 3-59 Interface of a Faceplate Container on the Simple Faceplate
This is the Faceplate-Container with all references in the Interface.

The variables that are referenced via the interface for controlling the actuators, in this case, the motor, can be configured

as follows. They are then interpreted in the PLC code.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 53

Best Practices of Screen Engineering

MName Data type Connecticn PLC name FLC tag Address Access mode Acqui.. ..
| * Motors_hotor_1 | Motor E HMI_Conne... E PLC 1 Motors Motor_1 E B <symbolic access= Tis
< = motor_running_left Bool HMI_Connectio... PLC_1 Motors Motor_1.... <symbolic access> Tis
<0 = rotor_running_right Bool HMI_Connectio... PLC_1 Motors Motor_1.... <symbolic access= Tis
1 = motor_pos Int HMI_Connectio... FLC_1 Motors Motor_1.... <symbolic access>= Tis

Figure 3-60 PLC-UDT for the Simple Faceplate

Advantages:

e No scripting required.
e Dynamic.

3.3.2.2. Use Case: Static use of Text Lists@

Description

This Case concerns the static use of text lists that are used in all Faceplate instances of the Faceplate without the need for
dynamic adaptation on the Faceplate container.

A typical scenario is the display of the status of system components such as actuators. It is crucial that each Faceplate
instance uses the same text list to ensure a consistent display of the actuator status. Any changes or additions to the
status/state of an actuator should be automatically applied to all Faceplate instances of this Faceplate.

I I Visualization ” Tag Interface || Property Interface H Local Tags ” Event Interface |
[Erendedsgle [7] F AL X EES MU +EE UIEl = 8 888 2"

Twe-way Act: > I

Figure 3-61 Two-Way Actuator Faceplate with a Status Text Box Displaying Actuator Status

m
= =
Text lists
-~ Name a Selection Comment
2| status_Text_List valueiRange
(<] i >
L e o
Text list entries
. Defau.JValue o Name Text
[E] o Closed
]| 1 Opening
iE| 2 Opened
€] 3 closing
€| 4 Error
] 5 Initializing
] 6 Calibrating
i 7 stopped

Figure 3-62 Configured Text List Reflecting Possible Actuator States

Solution: Text Iist-Type@

For the static use of text lists, we recommend using the text list type, which was introduced in version 19 and can be
referenced directly at the property of an object since V19 Update 2. A corresponding text list type for the desired text list
must first be created in the library.

~ | Project library

=R E= [+]1 = #

Marme Status | Version Lowest dev...
et [<]- =] [~

v %] 00_Textlists |

b |43 Text list Status B voo:z 19.000

Figure 3-63 Text List Type in the Library

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 54

Best Practices of Screen Engineering

As the Faceplate can communicate directly with the library, the use of the text list type enables direct access to the text
list. In this way, the desired text element can be referenced directly to the corresponding properties of the object in the
Faceplate.

m Visualizi
FALABAANHUIIE UEN= 4 # BeF % 65 [7)8

txtStatus [Text box]
| Properties | Events | Texts | Expressions |

psellve Rasource lst
[name 5. # opemistion) ||
B earch HE~ Saciag
S Bag: [inse s T
- Font fesource izt [Tem et roves e 1 V00 2 o= |
Font E
walc nene
» Name 5. Han
» see 13 Hon
swikethrough none
+ undedine ten =
» weight None
» o [=] mezource list =

Figure 3-64 Text Property of Status Text Box on Two-Way Actuator Faceplate

Here, the text list configured in the library is referenced to the "Text" property of the text box. The index of the text list can
then be set depending on the status of the actuator.

Advantages:

e Engineering: Eliminates the need to specify the text list in the interface, which minimizes both time and potential
errors when referencing the Faceplate container.

3.3.2.3. Use Case: Dynamic use of Text Lists
Description

A Faceplate is to be created in which the instances of the Faceplate are each to use different text lists. The text list is
therefore adapted depending on the use case of the Faceplate.

The same scenario can be used here as in the Use Case: Transmitting a Subset of the Text List .The difference lies in the
number of actuators to be controlled. This Faceplate is intended to create a standardized control element for system parts
of a plant. The structure of the GUI remains the same for the system parts, only the logic in the PLC varies, and therefore
also the labeling of the buttons.

It's now designed to control four actuators instead of just one.

I I Visualization || Tag Interface " Property Interface Local Tags || Event Interface

Eedede F AL A EEANHUIBR NENZE & 8@

Figure 3-65 Extended Faceplate with Four Control Units

For this scenario, the same text list is used as in the Use Case: Transmitting a Subset of the Text List. Now, however, the

entire text content of this text list is used.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 55

Text lists
.. Name a selection Cornrnent
g Text_list_ActuatorControl_1 valueiRange B

Text list entries

.. Default Value o Narne Text
ERLe)] [V] Text_list_entry 1 Motor_1
j o 1 Text_list_entry 2 Forward
j O 2 Text_list_entry_ 3 Reverse
j (2] 3 Text_list_entry 4 Gripper_1
J O 4 Text_list_entry 5 Open
u (2] 5 Text_list_entry 6 Close
j O [Text_list_entry 7 ConveyorBelt_1
! &) 7 Text_list_entry 8 Faster
j o 8 Text_list_entry 9 Slower
J O g Text_list_entry . Valve_1
j (2] 10 Text_list_entry_... Open
j O 1 E Text_list_entry_... Close

C“‘\“ news

Best Practices of Screen Engineering

Figure 3-66 Required Text Elements for the Example Text List for Actuator Controls

Solution: Resource List

For this use case, a resource list in the property interface of the Faceplate can be used to dynamically transfer text lists
to a Faceplate. With this solution, the desired text list can be bound to the Faceplate container, depending on the
intended use (e.g. attachment part) and the texts can then be transferred to the properties of the objects using a script.

To access a text list in the Faceplate, it must first be specified in the property interface.

E | Visualization || Tag Interface || Property Interface || Local Tags || Event Interface
= 52 T

Mame Data type Data type explanation

TextList Resource list E Represents the text list

Add news

Figure 3-67 Property Interface of the Extended Faceplate

This resource list can then be read out and transferred to the properties of the objects, for which the “TextsByValues”
method should be used. With this method, you can quickly and easily read out the desired entries and store them in an
array. In this solution, it's not possible to directly reference the text list element at the object level, as is the case with the

multilingual text.

J Properties H Events ‘l Texts H Expressions
paElve [2 Global definition £| synchronous 5 G
Name . [fanysamizationi®) 1 export function FagsRlate EVR =rnakeBackGolon Jrigqss (item, triggerDataSet) [
Vi Search- BB gll B; 3 let values = [0,1,2,3,4,5,6,7,8,9,10,11];
~ Appearance 4
» Background - altemativ_. Script [~ <
» Background -calor one ! 6 1=t TextList — —
» Background-fill pattern S... None 7
~ Format = 8
» Alignment - horizontal L.. Mone g for{let 1 = 1; 1 < 5; 1+4){
» Alignment-vertical T Mone 1 i :
+ Background - il mode Nane | if let indexBase = (1 - 1} * %
» Background graphic -stre_ 5. Nene [
= Miscellaneous B 14 F = "+ i).Text - TextList[indexBase];
» Background graphic Nene 15
» Displayname HNone 16
* Interface 17 Fa =ft " + 1).Text = Textlist[indexBase + 1];
P Layers . 18
Name Fo. Lo
T 2 F nt_" + 1).T=xt = TextList[indexBase + 2]r
Suspendable 22 1

Figure 3-68 Loaded Event of the Extended Faceplate

In this case, a property dynamization of the Faceplate type was selected in which the trigger variable "@CurrentLanguage”
is used to reload the text list when the language is changed.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 56

Best Practices of Screen Engineering

ﬁ Global definition g synchronous @
export function Faceplate type RlternateBackColor Trigger(item, triggerDataSet) {

Add trigger %

Tigger
let TextList Ta ies.Textlist).TextsByValues (HMIRuntime.Languages, values);
I CurrentLlanguage

ER

1
3 let values =
4
5

g G [oa e

9 for(let i =

11 let inde

indexBase];

se + 1];

mze + 2];

r oK | | Cancel
|

Figure 3-69 Script dynamization for changing the text list

NOTE Name the objects consciously that they can easily be iterated with a for loop, for example to
adjust the text property.

A Faceplate instance of this Faceplate-Type can now be created in a screen and the desired text list can then be
transferred to the Faceplate.

J Properties " Events " Texts ” Expressions |
tzElve [
MName Static value i
?X <Search= B All B
b lcon]

~ Interface
Button_Left Pressed_1 System_Parts_Plant_1_System_Part_1.Motor_1_Forward
Button_Right_Pressed_1 System_Parts_Plant_1_System_Part_1.Motor_1_Reverse

Button_Left Pressed_2 System_Parts_Plant_1_System_Part_1.Gripper_1_Open __
Button_Right_Pressed_2 System_Parts_Plant_1_System_Part_1.Gripper_1_Close AR
Button_Left Pressed_3 System_Parts_Plant_1_System_Part_1.ConveyorBelt_1_Faster S
Button_Right_Pressed_3 System_Parts_Plant_1_System_Part_1.ConveyorBlet_1_Slower :
Button_Left Pressed_4 System_Parts_Plant_1_System_Part_1.Valve_1_Open i
o Sinl. o i IS st i
lTenIisl Text_list_ActuatorContral_1 | = | | 1:_"|
b LI .

Layer Layer_O

MName Faceplate container_2

Tab index] (sl

Figure 3-70 Interface of Faceplate Container on the Extended Faceplate

In this Faceplate, firstly, the text list shown above is referenced, which is then read within the Faceplate. Secondly, the
required variables to control the actuators are referenced here, which are then processed in the PLC.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 57

MName a

dbbbdbbbdbbbdbbd

~ System_Parts_Plant_1_System_.

Motor_1_Pos
Motor_1_Forward
Motor_1_Reverse
Gripper_1_Pos
Gripper_1_Open
Gripper_1_Close
ConveyorBelt_1_speed
ConveyorBelt_1_Faster
ConveyorBlet_1_Slower
Valve_1_Pos
Valve_1_Open

Valve_1_Close

Data type
System_Part_Type_1

Int
Bool
Bool
Int
Bool
Bool
Int
Bool
Bool
Int
Bool

Bool

Connection

HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...
HMI_Connectio...

Figure 3-71 PLC-UDT for the Extended Faceplate

Advantages:

Entry ID: 109827603 | V2.0 | 06/2024

Easy to configure

Best performance when transferring many text elements

FLC name
PLE_1
PLC_1
PLE_1
PLE_1
PLC_1
PLE_1
PLE_1
PLC_1
PLE_1
PLE_1
PLC_1
PLE_1
PLE_1

Best Practices of Screen Engineering

© Siemens 2024 | 58

Best Practices of Screen Engineering

3.4. Use of scripts
3.4.1. Script Triggers

Avoid cyclic triggers and use tag triggers instead. If you nevertheless need cyclic scripts and the use case permits it (e.g.,
when synchronizing data or for data exchange with databases), then configure the scripts in the Task Scheduler. The Task
Scheduler runs in a separate process in the background and places less load on your project than if you had configured
the scripts in the screen.

But also, be aware when using the setting “Tags-automatic”, that all referenced tags of the script are added. This can lead
to a lot of triggers and endless loops when writing tags.

I |_0, Properties ||"_1, Info i ||i Diagnostics || Plug-ins
J Properties ” Events || Texts || Expressions |
l‘% = 'E ' i @ —"w = Global definition 1| synchronous ﬁ oy
r— T Z Dynamizat i export function Rectangle = ackC
* General E - 'f: ':ralue; . Add trigger [X
3 return value;
» Font ; 1 1 Trigger | Tags -automatic [~]
b Text Button Show Content Resource list -
Disabled
~ Appearance Tag Ti00ms
Appearance - style item HmiRectangle 3 Add t; T250ms
» Background -alternative c- 0,255,0 None E?Dms J
» Background - color I:l 255, 255, 153 E script -Q;
] » Background -fill pattern Solid None
» Border-alternative calor [255, 255, 255 None L
I » Border-color - 125,125,133 None M Tags -automatic
b » Border-width 1 None m
» Corners :
» Fill direction Bottom to top None
] b Fill level 0 None
1 b Fill level - show D Mone
» Focus -show visual E Mone

Figure 3-72 Script triggers for script dynamization

If two scripts are triggered by the same tag, combine them into one single script.

Script triggers
Use tag triggers and avoid cyclic triggers @

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 59

Best Practices of Screen Engineering

3.4.1.1. Use Case: Scripts using the same Trigger Tag

Definition

When script dynamizations are necessary, some might be triggered with the same tag. So multiple scripts are triggered by
the same tag.

|§ [+ Add trigger X

Properties " Events “ Texts H Expressions | Trigger
BEEY % B 2 Giobsl definition 3] Synchronous s 2 g
e Stetic volue |7 Dynamization (1) 1 export function btnOperatorLogoff Visible Trigger{item) | =
¥ Opacity 1 Hene g Iet values
T Format 4 let username - Tags("flUsezNamd").Read();
~ Spacing 5
b Position - bottom 2 None 6 if (username ——— "") |
» Position-left 2 None 7 value = false;
» Position - right 2 None } else |
b Position-top 2 Mone n : value = trus;
~ Miscellaneous Feje t
} Connection quality-show [none I if ; TeTun valus:
» Connection status None I
Name btnOperato..
Tab index o
» Tooltip None
b Security
¥ Size and position
b Prcitinn - laf 1naz Mone =

Eridvoe
JPererties || Events H Texts ‘Expressions | Trigger

=

H A= Global definition 3] Synchronous 3 E"'i ¢% Go
— Smticvlucli xport function btnOperatorLogin Visible Trigger(item) { =
2 l=t valuer
~ Miscellaneous 3 T
» Connection quality-show [none _ o .
4 let username = Tags ("BUserNamd") .Read():
P Connection status None 5
Name btnOperato... & if (username {
Tab index o 7 value =
» Tooltip None g } else |
—= e or u 9 valus = falss;
! vy o] ! B
b Security H -
Z b 11 return value;
~ Size and position i 12
b Position -left 1043 None I b
» Position-top 3 None
» Rotation -angle 1] None
¥ Rotation - pivot point Absolute to... None
b Rotation - pivot point X 1] None
» Rotation -pivot point Y. 1] None

Figure 3-73 Script dynamizations with same trigger tag

Solution 1

Create a subscription in the loaded event of the screen for this tag and manage centrally the property changes with one
script. There is already a snippet for the tag subscription available. Especially when the same scripting logic is
implemented in the scripts (e.qg., if-else) you save a lot of script execution through the one subscription.

HMI Runtime ¥ Alarming

Logic » Alarm Logging
Audit trail

Connecticns
Database access
Data set

File System
Farameter Set
Plant Model
Screen

Tag » Read tag

Tag Logging 3 Wirite tag

User Management » Wirite tag with operator message

v v w T w v ow v oww

Trace Read tagset

GetDetailedErrerDescription Write tagset
Write tagset (short form}

Virite tagset with operator message
Linear scaling

Inverse linear scaling

Figure 3-74 Tag subscription snippet

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 60

Best Practices of Screen Engineering

Properties Events "

Texts

" Expressions |

Click left mouse button
Click right mouse bu...

)

wn

T

let subs = undefined;

E Loaded
Cleared
Trigger hotkey
"
*

R

- e o

subs = HMIRuntim
const username

if (username === ""} [
"ptnOperatorLogoff]”) .Visibls fa H
r.'.s{"") .Vi=zible = true;

5 {"ptnOperatorLogofl”
ms ("pradperatorlogin”) . Visibls

b
subs.Starc() s

1

Figure 3-75 Tag subscription in loaded event of the screen

(V19
Solution 2 #%/

Create a script on a property of the screen and manage centrally the property changes with one script. Set the trigger of
the script to the tag that should cause the property change. Access the trigger tag value in the script via

“triggerDataSet”.

triggerDataSet.Value returns the tag value, without reading the tag again, which increases performance.

It is recommended to add this script centrally to a property of the screen and not to a single screen object. The Property
“Background — alternative color” has been used here because it is rarely used for other dynamizations.

J Properties " Events " Texts

” Expressions |

|3 Properties |E

paElve

Figure 3-76 “triggerDataSet” for changing the properties of an image

Entry ID: 109827603 | V2.0 | 06/2024

MName Static value # Dynamization (1)
V| search: E Al E All export async fun *igge:(‘i;e;n,l ;.rllggerDﬂr.ﬂSEr.) {
¥ Appearance let username =
» Background - altema... l:l 255, 255,... = m if (username = Kl
» Background - coler [] 255, 255, 255 Mene Se Ttems (""?
» Background -fill pattern Solid None B =ns ("ptnOperatorlogin”
~ Format - boelse |
¥ Alignment-horizontal Left Maone j E t%r..a (I
b Alignment -vertical Top None ‘ 1 - remst
» Background -fill mode Window MNone 10 1
» Background graphic -s... Stretch to fit None
~ Miscellaneous
» Background graphic MNone U Trigger Tags ﬂ
» Display name MNone [
P Layers 32 items m
Nay:le Screen_1 : @Lemame |—ll
b Offcet-left 0 None B
» Offset-top o Mone
Screen number]
b Security
¥ Size and position
» Size -height 800 MNone
b Size -width 1280 None
<] m B ok || cancel

© Siemens 2024 | 61

Best Practices of Screen Engineering

triggerDataSet =/ @

To access the tag trigger properties, use triggerDataSet. b

3.4.1.2. Use Case: Trigger Scripts unrelated to Screen Object Properties

Description

When a script needs to be triggered depending on a tag change, and is not related to a screen object property (no item
needs to be adapted), there are a lot of options where to place this script.

In this example, three out of range rectangles are dynamized with a script for the property “Background — alternative
color”. When the tag triggers the script, nothing changes for the property, but a function is called. (see Figure 3-77)

Add trigger %

Trigger [T hd
ifo “ % Diagnostics
Tag 1

_] Properties H Events H Texts " Expressions I ! TagTrigger1 [‘
PaEYy e &) | Global definition| £%| Synchronous = 3| ¥4 1} ¢° (g

Name Static value .
¥ Appearance ~ 1 export function Rectangle 4 AlternateBackColor Trigger(item) ({
Appearance -style ite... HmiRectan... 2 functionl():
» Background - altern... -OZB 31
Add trigger
Trigger Tags -
— nfo HJ.’,_ Diagnostics
J Properties H Events [l Texts " Expressions TagTrigger2 -]
1 - = ol I
A EY e BJ 3 Global definition 3| Synchronous = i M i} ¢° G
export fun on Rectangle 5 AlternateBackColor Trigger (i
Name Static value | : ""p“f” ““th(:‘ %and at k ger (item) |
v Appearance || 5) A
Appearance -style ite... HmiRectan...
» Background -altemn... - 0,2 E‘
Addtrigger
Trigger Tags -
fo ﬂi Diagnostics
! Tag
J Properties Il Events ” Texts " Expressions : TagTrigger3 [=
LPEy @ &) 2 Global definition %3]
Ny e e
Name Static value - _\:p,ii-u.r:u
¥ Appearance A = i

Appearance -style ite... HmiRectan... '
» Background -altemn... - 0,2.. E\

Figure 3-77 Trigger scripts with unused screen item properties

Solution 1

Instead of using out of range objects, a scheduled task can be used for this purpose. This way, non-visible and actually
unused objects can be deleted. As this solution only works for code that is not referencing screen objects a second
solution is shown for that use case in the following.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 62

Best Practices of Screen Engineering

Properties Events lTexts l

| B} 23 Global definition 3| Synchronous i ¥ X ¢° Go
Updat | export function Task_ ScriptTriggers Update(triggerDataSet) {
if (ctriggerData Item("TagTriggerl™) .HasChanged triggerDat et.Item("Taglrigger3”) .HasChanged) ({

0o W -

Triggers | Tags

s ¢ - Tag
TagTriggerl |_\
TagTrigger2

TagTrigger3

<Add new:

Figure 3-78 Scheduled task for tag triggered code

Instead of using out of range objects, a screen property can be used for this purpose. This way, non-visible and actually
unused objects can be deleted and the configuration is made centrally for the screen.

Solution 2

A better solution is to use the Screen property “Background — alternative color”, add the three Tag triggers to it. To identify
which tag is triggered, the system function “triggerDataSet()” can be used. With this information the corresponding
function can be called (see Figure 3-79). This way, the three out of range rectangles could be deleted.

©, Properties |7,

JProperties “Even(s IITex(s “Expressions I

8 =V |§’ &) 3 Global definition 3] Synchronous = %i % i} ¢ Go
N P . export function _113 Scriprlriggers AlternateBackColor Trigger(item, triggerDataSet) {
SOPRERANCE ‘j; ~ if tem("T =d {
Background - al... I:l =S| 4
Background -col... [. | g i
Background - fill ... Solid | 6 Add Trgger X
¥ Format 15 7 4% .Item("TagTrigger2"”) .HasChanged) { Trigger
Alignment-hori... Left | &
Alignment-verti.. Top | k s 1 Tag
TagTrigger1 L]
TagTrigger2
TagTrigger3
ACO New

Figure 3-79 Trigger script centrally with screen property

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 63

Best Practices of Screen Engineering

3.4.2. Efficient Code

Efficient coding is all about reducing parts in your scripts that may cause to problems and even about part that do not
have an influence on the result of the scripts. There are a lot of points that you should pay attention to. Therefore, just
check if your code does not contain elements of the following list:

e Delete functions or import statements in the global definition area that are not called.
e Prefer system functions from the system function list, instead of scripting in the JavaScript editor.
e Delete empty events.

=] Properti

|Properties || Events || Texts || Expressions |

%y =] Globa inition 3| Synchronous | 3| T]
B 2 Global definition =3 synch j-“'c’c

export function Graphic wview 3_OnlhctIvated(item) {

[} Activated
Deactivated

ﬁ Click left mouse button
Press key

1

1

Release key
Click right mouse bu...

Figure 3-80 Delete empty events

e Avoid unnecessary loop iterations by targeted use of the break statement.

Properties

Properties Events || Texts || Expressions |

-"w =] Global definition j Synchronous H 'mi ¥ 42 bes
Activated ﬁ export function I0 field 1 OnInputFinished(item, wvalue) {
D?ECtNatEd 3 let itmListBox = i-::ee:.::%:..s{""?.'
Click left mo... N
Press key 5 2tBox. Sel B

for { le

Release key

Click right m... 7
E Input finished
10 }
1 S
i 12
L1)
3

Figure 3-81 Break statement to jump earlier out of for loop

e Delete or comment out constants, variable definitions, debugging traces that are not used anymore.

e Only read tags that are used in the script.

e If two scripts are triggered by the same tag, combine them into one single script.

e Read tags once, save them in a variable and reuse this one if the tag is used multiple time in the script.

e Use a “const” definition when possible (if the value does not need to be changed in the script context) and otherwise
define a variable with “let”. Do not use “var” anymore, because it is a deprecated java script standard.

e Use a switch-case instead of if-else.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 64

+ Temp_Units[0];

© Temp Unies[1];

+ Temp Units[0]:

Temp_Units(1];

Tewp_Value_GradCela + Temp_K_Equvalent_0GradCels) .toStringl) + Temp_Umita(z]:

- Itens (fat HettieTenpesature) .Text = text;

Figure 3-82 Switch case vs. if-else

Use asynchronous scripts if possible. For calls that can take longer e.g. database access, only the async variant is offered

&) 3 Globsle Definition 5| synchron ©

Best Practices of Screen Engineering

WK gy

pped(item, X, v, modifiers, trigger) {

1 export function Button_3_On

VaI TENt = '2222';

var Temp_K_Equvalent_0GradCels = 273.157

ICID_deDE = 10317
1CID_enUs
ICID_frFR
1CID_frca

13 if ((Tags("]

") .Read() === LCID_deDE)
") .Read () . toString() +

.tostring() +

} else {
20 }

22}

24 Scrzen.Items("EXt_KettleTemperaturd”).Tesxt = DEXT;

26 }

anyway. For tag access the sync and the async mode is supported because tag accesses are normally faster. More
information regarding the script call can be found in the Java Script Tips and Tricks.

O

E % Global definition % Asynchronous

WX 0 Gy

function A

\ 4 *

function B

function C

function D

Figure 3-83 Compare of asynchronous and synchronous script call

(Tags ("PazamCountzyIl") .Read() === LCID_frFR)) {
ad{) === LCID_fxCR)) {

text = (Tags ("fetticlemperature °Q").Read() + Temp K Equvalent_(GradCels).toString() + 'K';

-‘ E‘-ij}j Global definition ﬂ synchronous :

function A

v

function B

v

function C

v

function D

e Be aware of how often scripts are executed, especially during the screen load process (see Figure 2-9). The following
example is for a script in the on change event of the dynamized process value of a list box. The visibility of these

property change events can be switched in the engineering through the eye icon@.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 65

https://support.industry.siemens.com/cs/ww/en/view/109758536

Best Practices of Screen Engineering

G, Properties |4, Info

J Properties || Events || Texts ” Expressions |
lé = = (i ® k3 |2 Global definition #f| Synchrorous BN X (o= Go
Narme Static value ? Dynamization (2) export function List_box_l ProcessValue OnPropertyChanged(item, value) {
G |
ENEra for | let SelectionItem of item.SelectionItems){

1
2
3
¥ Processvalue Tag 4 if (SelectionTtem. Tadelected) {
Change l:l Seript E 5 Tags ("”J JWrite(SelectionTten. Text):
Quality code... Mone 3 break;
b Selection items 3 items 7 }
» Appearance I
9
i}

» Format

oG

b Miscellaneous

Figure 3-84 On change event from process value of a list box

e Read several text list entries at once via JS with

HMIRuntime.Recources.TextlList(txtList).TextsByValue(HMIRuntime.Language, value);

instead of using a for loop.

l=t wvalue = {}

for{let 1 = 1; i >»= count; i++)
{
valuss.push({ i + currentPage * @);
}
let texts = HMIRuntime.Resources.TextlLists (txtList) .TextsByValue (HMIRuntime.Language, values)|
}

Figure 3-85 Read test list entries at once

3.4.2.1. Use Case: Write and Read multiple Tags

Description
To write and read single tags a lot of system functions are provided like SetTagValue() and also through
Tags(“Tagname”).Write(“value”) or Tags(“Tagname”).Read() the tags can be addressed through scripting.

Name Wal

O
0

DecreaseTag

>

IncreaseTag
InvertBitinTag

[]

ResetBitinTag
SetBitinTag
SetTagValue

h Shiftandhack

=

Figure 3-86 Excerpt from the system function in the tags section

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 66

Best Practices of Screen Engineering

Example:

O

E;J} & Global definition £3| Synchronous ﬁ Ellli X C@
export function Button 2 OnTapped(item, x, ¥, modifiers, trigger) {

const value = Tags("[TagSetValue").Read();

1
2
3
4 HMTRuntime.Tags.SysF SetTagValue { MyvTagl”, value) ;
5
[
.
g

HMIRun MyTaga”,valus) ;
HMIRuntime.Tags.Sy: MyTagly”, valus) ;
MyTagd”, valus) ;

.Tags.Sy

HMIRuntime.Tags.SysE

HMIRun .Tags.SysF MyTagy"”, valus)
HMIRun .Tags.5y MyTagd ",valuel) P
10 HBMIRuntime.Tags.3y MyTag?™, value) ;
11 HBMIRuntime.Tags.S5ysF MyTags”, value) !
12 HMIRuntime.Tags.Sy MyTagq”,valus) ;

13 HMIRuntime.Tags.SysFE

SetTagValus { MyTag. 9",value).'
14
15
16 Screen.Itema("").Tex: ="";
17
13 for (let 1 =1; 1 < 11; i++){
19
20 Scrffn.Itema("") .Text += "™ Value of element "™ + i + "=" + Tags("MyTag™ + i).Read({) + "\r
21 1
22}

Figure 3-87 Multiple calls of SetTagValue

But there could be also a tag set created, that covers multiple tags in a container.

Solution

Create a tag set when writing or reading multiple tags and use its Write and Read method to only send one collective

order to the PLC.

The following screenshot shows the customization of the script with TagSet functionality.

E Global definition FR Asynchronous ﬂ IIIIIi X ¢® l:g

Figure 3-88 Reading multiple tags with one TagSet

Entry ID: 109827603 | V2.0 | 06/2024

i

1l export async function Text box 21 OnTapped(item, x, ¥, modifiers, trigger)
2 const value = Iags{"":l Bead();

3

4 TagSet creation

5 1let ta = Tags :'_':.':ateTa:er:t{[["hyTag]]"], ["hyTang"], ["hyTag:iI"],
6 ["MyTagd"], ["MyTagq"1, ["MyTagq"], ["MyTagq"],

7 ["MyTagd"1, ["MyTagq"l, ["MyTaglq"]]):

]

4

10

11

12

13

14

13

lé for {let i =07 1 < ts.Count; i++){

17 ta[i].Valus = walue;

15 Show all walues at the text field

19 Screen.It.‘:ms(""J .Text " Value of element ™ + i + "™=" +ta[i].Value + "\r\n":
20

21

22 rite new values to each tag at the Tagdet

23 ts.Write();

24

23 1

© Siemens 2024 | 67

Best Practices of Screen Engineering

Read and Write Tags
Use a TagSet to read and write multiple tags instead of single calls of SetTagValue. Especially @

for synchronous reading and writing of several control variables. ™~

For more information regarding scripting read the SIMATIC WinCC Unified — Tips and Tricks for Scripting (JavaScript).

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 68

https://support.industry.siemens.com/cs/ww/en/view/109758536

Best Practices of Screen Engineering

3.5. Others

e Reduce empty textlist entries
e Be aware of the system limits

Screens
Unified Comfort 7-12" Unified Comfort 15-22°
Maximum size in the engineering system 20,000 * 20,000 pixels
Maximum size in runtime 20,000 * 20,000 pixels
Number of screens 1200
Mumber of lower-level screen windows 10
Nurmnber of objects per screen 200 1200
Nurnber of objects from the "Controls” area per 40 80
SCreen
Nurmnber of tags per screen 600 800

Figure 3-89 Excerpt from the system limits defined in 19\

e Only relevant for PC-RT: Script Debugger should be disabled in productive use of the runtime project

3.5.1. Acquistion Cycle

When a PLC tag is registered, it is configured throgh the HMI how often the value gets updated from the PLC to the HMI.
This time is defined as the acquisition cycle. If the PLC detects a value-change after one cycle time, the value is
communicated from the PLC to the HMI. If the value remains the same, there is no communication between HMI and
PLC.

= - - - S
F3HR =]

HMI tags v | Find and replace

Name Tag table Data ty.. Connection w PLCname PLC tag Add... Access mode Acquisition cycle | fomment

<@ Dats_block 1_plcint Scripting [=] nt HM_Conne [.] PLC1 Da Ciplent [[=] <symbolic acce] [T15 E] | Find:

a E Dynamizations Bool <nternal tag=> L = .

@ Tigg Scripting Int dntemal tag= i GEE [N 1

) Gycles

[<] Name. Cycletime Cycle unit

Discrete alarms Analog alarms Logging tags
I [2 [tooging tag miliseconds

D Name Alarm text Alarmecless Triggertag | Trigge. | Connection of t.. |Acknowledg... |Ackn milliseconds

<Add news milliseconds
milliseconds.
milliseconds.

milliseconds.

GEGGGGGE

milliseconds.

Figure 3-90 Acquisition cycle for HMI tags with PLC connection

In general it is advised to configure a higher acquisition cycle as this reduces communication load.

Acquisition Cycle
Prefer in general a high / long acquisition cycle for PLC tags and apply the inching system @
functions to prevent mistakes in overwriting values. I

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 69

Best Practices of Screen Engineering

EE

* Inching
ReadAndDecreaseTaq
ReadAndincreaseTag
ReadAndinvertBitinTag
ReadAndResetBitinTag
ReadAndSetBitinTag
ReadAndSetTagValue

» Tag logging

Figure 3-91 Inching system functions for PLC tags

[w]

Acquisition Cycle T1s

Value

PLC communicates
new value to HMI

Timeins

Figure 3-92 HMI-PLC Communication for Tag with Acquisition Cycle of T1s

Please keep in mind that PLC tags with a higher acquisition cycle are updated less often and therefore a change in value
is only visible in Runtime after the current cycle time is over.

3.5.1.1 Use Case: Writing a PLC Tag in Screen Loaded Event

Definition

Screens inside of screen windows can also be set by number. If depending on a tag, a different screen should be displayed
inside a screen window, it can be necessary to read and/or write PLC tags inside of the screen loaded event.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 70

Best Practices of Screen Engineering

1800

80

Figure 3-93 Different screens that should be displayed

Solution

In the following screen loading event, a PLC tag is written which is used for the dynamization of a screen.

Screen_5 [Screen]

| Properties || Events || Texts || Expressions |
Global definition @ Asynchronous
Click left mouse button ; export async function Screen 5 OnLoaded(item) {
ick right mouse bu...
' 3 if (Tags("MotorIsRumming").Read()){
4 Tags (" ") .Hrite{l):
Cleared 5 }
Trigger hotkey & elae]
7 Tage(fFomsemNEReE) Write (2);
8 }
9
10}
Figure 3-94 Writing a PLC tag in the loading event of an image
Screen window_1 [Screen window] &, Properties |74 In
J Properties || Events || Texts || Expressions |
i% B EII’ i ® Tag
= - -
me |Stat|c value |7 Dynamization (1} s
z(<Search> E All E All - |~
- General L ml Tag: |ScreenMumber ||—§
b Screen B = PLCtag: Data_block_1.5creenMumber A
~ RGeS 3 Address: Int
Appearance -style item HmiScreenWindow 3
» Focus - show visual [Mone —
b Title row-color [145. 147,154 None Type Eopdition sereen |
» Window settings Show heading, 5.. None @ None
» Format ovange
= I:Js;ellane;:_us . . o OMJIIipIe bits
onnection s us ne . .
¥ lcon Mone OSIm‘]h bz
b Label

Figure 3-95 Dynamization of screen via Screen Number

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 71

Best Practices of Screen Engineering

As the written tag “ScreenNumber” is a PLC tag, the new value will be visible after one complete acquisition cycle time.
Therefore configure a small acquisition cycle for PLC tags that are written in the screen loaded event.

Acquisition Cycle Loaded Event
Configure in small / short acquisition cycle for PLC tags that need to be written in a screen @
loaded event. p

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 72

Best Practices of Screen Engineering

3.5.2. Use Case: PLC UDT Arrays with Multiplexing

Definition

To describe objects (e.g., a motor) with tag values, UDTs are a good way to structure the data that belongs to the object.

Data_block_1
Marme Data type start value Retain Accessiblef.. Writa.. Visiblein ... Setpoint
1 <@ ™ Static
2 4@ e v Motorl *UDThiotar’ O =] = ~ O
3 lan = Mame WString VS TRING#
4 40 L] Speed Real 0.0
5 lan = Acc Real 0.0
6 |4m= v Motor2 *UDTMator” O =] =] =] =]
7 lan = Name WString WSTRING#
8 < L} Speed Real 0.
o |l = A Real 0.

Figure 3-96 Small motor PLC UDT

If there are a lot of instances of this object (e.g., 20), but not all data of all instances need to be available at once in
runtime, there is the option of multiplexing. Thereby only a subset from this array (e.g., 5 motors) is addressed and when
the data of another motor is required only the reference to the instance needs to be changed by selecting another index
of the array.

Data_block_1
Name Data type Start value Retain Accessible f.. Writa... Visiblein .. | Setpoint Supe

10 <@ = ~ Motors ﬂ D g E E E

11 4 = * Motors[o] *UDTMator"

12 g = Name Wtring WS TRING#

13 D = Speed Real (

14 -4 L Acc Real 0.0

15 <@ = » Motors[1] “UDTMotor

1640 = » Motors[2] “UDTMotor”

17 €0 = » Motors[3] *UDTMotor"

18 4@ = » Motors[4] “UDTMoter

19 40 = » Motors[s] "UDTMator"

20 <@ = b Motors[6] *UDTMotor"

21 @@ = v Motors[7] “UDTMotor”

22 40 = b Motors[8] “UDTMotor"

234 = b Motors[s] “UDTMotor

o4 l|n = b Motors[10] *UDTMotor

25 4@ = b Motors[11] *UDTMotor"
o g g — — — —

Figure 3-97 Array of 20 motor PLC UDTs

Sometimes the UDTs are much more complex and store a lot of data that might be necessary for the PLC but not for the
HMI.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 73

Best Practices of Screen Engineering

EYr
HMI tags
Mame Tag table Data type Connection PLC name FLCtag = A
<@~ servoToControl3 | Powertagsindex_Servo [= | LFB_typeSersalnt... @] HMI_Canne... [=multiplextags

gl =

> commands

- v w w B

refreshConfiguration
editConfiguration
saveConfiguration
acknowledge
servoCommmands
configuration
ronitating
diagnaostics

Powertagsindex_Servo
Powertagsindex_Servo
Fowertagsindex_Servo
Powertagsindex_Serso
Powertagsindex_Serso
Powertagsindex_Servo
Powertagsindex_Servo
Powertagsindex_Servo
Powertagsindex_Servo

LEC typelntedfaceco...

Bool

Bool

Eool

Eool

LFB_typeSersaCorm..

LFE_typeSersalnterd. .
_typeServoFra..

LawisCtrl_typeDiagna...

HMI_Connectia...
HMI_Connectia...
HMI_Connectio...

HMI_Connectio
HMI_Connectio

HMI_Cannectia...
HMI_Connectio...
HMI_Connectiao...
HMI_Cannectio...

<hfultiplex tags
<hfultiplex tags
<hiultiplex tags
<htultiplex tags
<htultiplex tags
=hultiplex tag=
=hfultiplex tag=
=hultiplex tags
<htultiplex tags

GhdppppppeaAlg

v v v v v v B

seraToContrall

sepvoToControl2

servoToControld

servoToControlS

servoToContralé

servaToContrald

Powertagsindex_Servo
Powertagsindex_Servo
Fowertagsindex_Servo
Fowertagsindex_Servo
Powertagsindex_Serso
Powertagsindex_Servo

LFE_typeServalnter. .
LFEB_typeServalnter. .
LFE_typeServolnter...
LFE_typeServolnter...
LFE_typeSersmlnter

LFE_typeSersalnter. .

Figure 3-98 Complex PLC UDT with more data than required in HMI

Solution

HMI_Cannectio...
HMI_Connectia...
HMI_Connectio...
HMI_Connectio...

HMI_Connectio

HMI_Cannectia...

=Multiplextag=
=htultiplex tags
<hiultiplex tags
<hiultiplex tags
<hfultiplex tags
=hultiplex tag=

If only a small amount of the data from the UDT instances is required in the visualization, do not use multiplexing. Even if
only one datapoint from the UDT is linked to an HMI property, when changing the concrete instance of the UDT, the
whole structure is loaded from PLC and not only the part that is needed.

For data stored in complex PLC UDTs load each UDT as an own instance and do not use arrays with multiplexing.
Every time an index is changed the whole structure at the PLC will be refreshed even if it is not in use.

Multiplexing of PLC UDTs
Only use multiplexing for simple PLC UDTs or when all data from the UDT instances is also
required in the visualization.

Entry ID: 109827603 | V2.0 | 06/2024

©

o

© Siemens 2024 | 74

Analysis of an existing Project

4. Analysis of an existing
Project

When there is already an existing project, regardless of whether problems have already occurred during runtime or not, it
is always beneficial to carry out an analysis whether there are opportunities for improvement in the engineering of a
project. In this section a guideline is provided that shows you all possibilities to further analyze your WinCC Unified project
and therefore also gives you an overview about a possible step-by-step analysis procedure.

If there is a known problem in runtime (screens are loaded slowly, some functionality is not working as intended), you
can directly jump in the object or script analysis. Otherwise, you can test the project on the target device in runtime and
check if everything works as expected.

For an analysis it is also important to be familiar with the general runtime workflow (e.g., the order of running scripts)
and what is running maybe in the background (e.g., cyclic scripts for timers), to be able to go to the responsible location
(script, configuration, task) in the engineering when a problem is found. If there is to less knowledge about the running
scripts and order of processing during runtime, the Google Chrome script debugger gives a good opportunity to
automatically navigate through all the executed scripts during screen load, event execution through a button click or a
specific screen change.

Another method is to put traces into scripts and check through the RTIL Trace Viewer when they are triggered.

Once you are familiar with the general script execution and processes in your project, you have a good knowledge base
for the further analysis.

The following scheme shows a possible procedure in which order and how to choose the tools for analyzing the project,
when to look at the runtime or when to focus more on the scripting part of the project. The analysis also consists of two
parts, the object and the script analysis. The order, which one is made first, can be changed depending on the project.

All procedures that are mentioned in the flow chart are described in detail in the following chapters.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 75

Analysis of an existing Project

General
analysis of a
project

|

Is there an -
unintendend Analyse the runtime

rintime behavior in detail.
behavior? l

Are you Use the Google Chrome
script debugger to see
the execution order of
—>| scripts, when runtime

starts and/or the
No screens load.

familiar
with the
running
order of the
scripts?

Put traces in the necessary scripts to find out through the RTIL Trace viewer to
indicate some critical scripts or issues or screens with long loading times.

Apply the
ShowsScripts
Add-in

Object Analysis

- - Is the issue
Summarize the item count for these related to

screens with the exported table. Summarize the item counts for screens (and

specific ist context) with high quantity structure.
screens?

J

Compareresults with system limits.
Focus also on controls that are used and cyclic triggers!

l

Are
Count the objects within the faceplates
faceplates manually, summarize with |«—— used in
screen items and compare again with screen

system limits. Yes

context?

Script Analysis

Figure 4-1 Project analysis startup flow chart

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 76

Analysis of an existing Project

The following flowchart shows the different possibilities for script analysis.

Script Analysis

v

Open the ShowScripts exported folder
with VS Code and browse the scripts for
keywords that indicate problems.

Use the JS Connector to analyse the
global modules also with keywords.

Yes

|

Are there
also global
script

modules
used?

Analyse the scripts manually in TIA Portal.

Are there
Scheduled
Tasks used?

Figure 4-2 Project analysis script analysis flow chart

Entry ID: 109827603 | V2.0 | 06/2024

|

Apply changes from the screen and script
analysis and verify the effect of the
changes in Runtime.

© Siemens 2024 | 77

Analysis of an existing Project

4.1. ShowScripts Add-In

The ShowsScripts Add-In is a TIA Portal Add-In which provides an overview about HMI devices in TIA Portal projects and
their quantity structures regarding screens, dynamizations, scripts and events.

The following chapters describe how to retrieve the Add-In and analyze the export data of an HMI device regarding
efficient engineering.

4.1.1. Download and Installation

The Add-In is an open-source tool and provided free of charge via Github. Navigate to the releases to download the latest
version.

& tia-portal-applications / TIA-Add-In-ShowScripts ' pu L) Notifications
<> Code (3 Issues 3 I Pulirequests () Actions [Projects (@ Security |~ Insights
F master + b © 41g Go to file a About
Export all JavaScripts of all screens to a
SUP-HMI Sync from CSC at Wed Dec 20 14:52:07 UTC 2023 apg 4 minutes ago D) 14 single file in your project UserFiles

ctory and get an

aleApplication

s
- @thu May 4 r
i o
1
= README.md
. . Releases |4
TIA Addin ShowScripts

© ShowScripts v1B17.0 (Latest

Export all JavaScripts of all screens to a file per screen in your project UserFiles’ directory and get an additional Excel

over all screens,

Development Packages
Open TestAddin:sin and develop your code in AddScriptsTolist.cs
B tia-portal-applications / TIA-Add-In-ShowScripts Pub 0 ot
>Code (D lsues 3 I Pullrequests (@ Actions [0 Projects (@ Security k2 Insights
last month : -
ast mont ShowScripts v18.17.0 (=
rf . Add option te not overwrite data that is already exported, se you can continue exporting, if the exporting was canceled.
Compare ~
v Assets 2
[Msource code (tar.gz)
" .
o ShowScripts v1.16.0

Figure 4-3 ShowsScripts Add-In on GitHub

NOTE Please be aware to download the most current version of the Add-In to take benefit from the latest
bugfixes.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 78

https://github.com/tia-portal-applications/TIA-Add-In-ShowScripts

Analysis of an existing Project

After the download of the .zip folder of the ShowScripts Add-In, it needs to be installed in TIA Portal. Please refer to the
respective Use Case: TIA Add-Ins in the Siemens Industry Online Support for a description how Add-Ins can be installed
and used.

The Add-In is ready for use as soon as you can see the green status in the Add-Ins task card in the top right corner.

Options =
o =]
=

+ | Add-Ins E
MNarme Status —
¥ [Corporate Add-Ins BL'U
5

~ [7] Adddns =
= =

I=§‘| Showscripts_%18.17.addin + I g_

s

&

g

- =1

v | Details e
=

hame: | | “
Path: | | [

Author: | |
todified on: | |

Figure 4-4 ShowsScripts Add-In installed in TIA Portal

4.1.2. Usage of the ShowScripts Add-In

Function scope

The function scope of the ShowScripts Add-In is the export of relevant quantity structures and scripts of a WinCC Unified
based device which means:

e All scripts which are used on the screen items within every screen as a js file
e Atabular overview (csv file) of all screens and its respective screen item amount

Starting the analysis with ShowScripts

1. For getting started with the ShowScripts Add-In open the to be checked project in TIA Portal and follow the steps
below.

2. Right-click on the Unified device you want to analyze with the Add-In.

3. If the Add-In is ready to use (see chapter 4.71.7) the option “ShowScriptCode” will be available at the right-click
menu. There are two “Export” and one “Import” option available.

e Export all scripts of HMI: Option for the very first export of scripts and screen overview

e Exportall scripts of HMI overwrite: Option for subsequent exports to overwrite existing export files after a
previous export failure

e Import all scripts to HMI: Option for the import of adapted scripts back to the project

For the initial analysis of a device in your project select the option “Export all scripts of HMI” to start the project analysis.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 79

https://support.industry.siemens.com/cs/ww/en/view/109773999

¥ |5 MTP1000 [MTP1000 Unified Comfort]

Y pevice configur
ﬁ Online & diagn
1 Runtime semting

[sereens M
[Sereen manage 54

- -

-

ré HMI tags
lBZ‘i Connections
[HMI alarms
7] Parameter set
w Logs E-F
El Scheduled task Eg'ﬁ
EE Scripts

3 collaboration d

X

-

}:4..1 Text and graphis &
b [MATPIE00 [MTFI50 5
3 r_ﬁ' RATR1900 [MTP190
L3 T:' MTP2200 [MTP2200
v (D PoSystem_2 [SIMY
» E‘q, Ungrouped device
b £§ Security settings
3 E Cross-device functi

b L4l wersion contral intd
» % Online access
» '“y Card Readet/USE me

~ [} MTP1200 [MTP1 200 Linifiad Camfor

Change device fversion

Cpen
Open in new editor

Cut

=] Copy

Faste

Delete
Rename

G0 to topology view
G0t hetwork view

Campile
Download to device

m Oycles ﬂ Go anline
]

Go offline

Online & diagnostics
HMI Device maintenance
Receive alarms

Change object color

Stop runtime/simulation

g Search in project
r ;i Common data Q(J Crossreferences
» rj]] Documentation se a Print...

r.
b D Languages &resol £, pring preview...

Export CAx data...

_-Ib Export module labeling strips..

Add-ns

g Properties...

Alt+Enter

Ctrlx
Crrl+
Crley

Analysis of an existing Project

eral 1" Cross-references " Compile

Ctrl+D
» :llshowallmessages |‘|

Ctrl+F
F11

Ctrl+P

ath Description

- ‘ Details view

Figure 4-5 Initial export via ShowScripts Add-In

Export all scripts of Hw
Exportt all scripts of HMI owverarite
Irmpaort all scripts to HiI

As next step the TIA Portal will ask you for confirmation that the Add-In will access your project’s data via Openness which
you need to confirm with “Yes to all”.

Devices Plant objects

]

*] wincCUnifiedv18_FeatureDerms_v2
K Add new device
By Devices & networks
» 'I. PLC_1 [CPUS16F-3 PR/DP]
» |54 MTPTOO [MTF7O0 Unifisd Comfan]

» [MTPI000 [MTP1000 Unified Comfart]

= () MTP1200 [MTP1200 Unified Comfort]

Y Device configuration
%) online & diagnostics
Y Runtime settings
» [screens
» () Sereen management
» [HMitags
%24 Connections
[HMl alarms
] Parameter sertypes
Bl Logs
5] scheduled tasks
(&) soripts
3 Collaboration data
) oycles

4] Text and graphic lists

Figure 4-6 Confirmation of the Add-In’s project access

After “yes to all” has been executed, a window opens in which you have to assign a screen name.

o-! Screen name

MTPF700_Ventilation - Enter a screen name:

The application ‘ShowScripts.exe’ located on "C:

WU sersisiemensiAppDataiLocal\Tempiegv3gasc.omg’ is
attempting to access the TIA Portal with the process ID 1180.
Do you want to grant access?

To grant access: 'Ves'.
To grant access and save the authorization: 'Yes to all'.
To deny access: "No"

3 TlA Partal instance(s) is/are active.

estoall

— | X

Figure 4-7 Enter a screen name

Entry ID: 109827603 | V2.0 | 06/2024

OK

© Siemens 2024 | 80

Analysis of an existing Project

Afterwards you will see the analysis progress of the Add-In in the command window. If the tool runs successfully, the
command window will close itself after running through all the screens in the device. In the folder “UserFiles” of your TIA
Portal project folder there will be a new folder created with the respective device name in which you can find the
exported scripts and a csv-based screen overview file.

| IN-B EAR ugr

Home Share

v 4 B> TisPc s Doc

B
B
B
B
B
B
B
B
B
B
B

Figure 4-8 Results of the Add-In export in UserFiles > “DeviceName”

4.1.3. Preparation of the Screen Overview File

By default, the exported screen overview file has the format csv. To be able to adapt the file format and save the changes
later you need to initially open the file e.g., with Microsoft Excel and save it separately with the file format “.xIsx".
Afterwards you can work on this file and save the shown implemented changes permanently.

After the file gets opened the first time the values are still in comma-separated format and it is hard to evaluate the
analysis.

HMI_RT_8_Scripts_Overviewxls: - Excel

Insert Pagelayout Formulas Data

X Cut

Calibri MRy = General - =EI # | Normal Bad Good Neutral
ER Copy ~ =
B I U~ |Zi+v| &~ - == E. g » | %8 08 Conditional Format as H H 1atory ... |Input
¥ Format Painter L “" | Formatting~ Table ~ | (.
Clipboard (] Font [Alignment. [Number (] Styles
H19 - Fe
A B c D E F G H 1 J K L M N o P Q R s T u

1 |Screen name,ltem count,Cyclic (<=500ms),Cyclic (>500ms),OtherCycles, Disabled, Tags-Dyn-Scripts, Tags-Dyn, Total Number of Tags,Resource list,Events,Child screens,HmiFaceplateContainer,HmiScreenWindow,HmiGrapl
2 |01_Screenlayout, 7,0,0,0,0,0,0,0,0,1,02_Header&00_Navigation_0&&&03_MainNavigation,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

3 |02_Header,18,0,1,0,0,0,1,1,0,8,,0,0,1,0,0,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

4 |03_MainNavigation,4,0,0,0,0,0,0,0,0,5,,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,

5 |05_ThirdNavigation,7,0,0,0,0,0,0,0,0,9,,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,0,

6 |04 SubNavigation,3,0,0,0,0,0,0,0,0,11,,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,

Figure 4-9 Screen overview file with comma-separated format

Therefore, the first step is to bring the analysis data into a well readable format.

1. Mark the first column which contains the comma-separated data.

2. Go to the register card “Data” and select the option “Text to Columns”.

3. A wizard will open which guides you to get the right format. It is important to set the delimiter “comma” in the
second step of the wizard. Afterwards the wizard can be finished, and you will see the values separated into columns.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 81

Analysis of an existing Project

Home Insert Page Layout Formulas View Help Q Tell me what you want to do
2

—1 [Queries & Connections L = E 5 — E
i = ==
a0 E D K EETE:
Get From From From Table/ Recent Existing gl Sort Filter 8 Textto Flash Remove Data Consolidate
Data~ Text/CSV Web Range Sources Connections Yo Advan Yolumns Fill Duplicates Validation ~
Get & Transform Data Queries & Connections Sort & Filter Data Tools
Al e Screen name,ltem count,Cyclic (<=300ms),Cyclic {>500ms), OtherCycles, Disabled, Tags-Dyn-Scripts, Tags-Dyn, Total Mumber of Tags,Res
1
A e | ¢ | p | E | F & | H | 1 J b | K | L | M | N | o | P | ¢
1 |Screen nafne,Item count, Cyclic (<=500ms), Cyclic (=500ms), Otl onert Text to CUansWiH“i_ Step 2 of 3 I 7 w [Events,Child screens HmiFa
2 |01_screerfLayout,7,0,0,0,0,0,0,0,0,1,02_Header&00_Navigatiol D,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
This screen lets you set the delimiters your data contains. You can see how your text is affected
3 |02_Headef,18,0,1,0,0,0,1,1,0,8,,0,0,1,0,0,0,0,0,0,0,0,5,2,0,0,0,0, TR [e B
4 |03_MainNgvigation,4,0,0,0,0, 0,0,5,,0,0,1,0,0 0,0,0 T—
elimy
5 |05_ThirdMavigation,7,0, 0,9,,0,0,0 0,1,d 0O
PR il
6 |04_subNaligation,s,0,0,0,0,0,0,0,0,11,,0,0,1,0,0,0,0,0,0,0,0,0,0| Os y. [R
7 |00_Naviggftion_2,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, L
omma
& |00_Navigiftion_3,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, D;pm Text gualifier: |~ v
9 |00_Navig:|tion_4,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0 E)‘th e
10|00 _Navigéftion_5,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -
11 |00_Navigiltion_6,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
12 |00_Navig:ltion_7,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, Data preview
12 |00_Naviggftion_0,8,0,0,0,0,0,0,0,0,8,,0,0,1,0,0,0,0,0,0,0,0,7,0,0,
14 |00_Navigg|tion_1,7,0,0,0,0,0,0,0,0,5,,0,0,0,0,0,0,0,0,0,0,0,0,0,0, - X
=1 o~ creen name tem count [yclic (¢=500ms) [Cycliec (>500ms) pr]#A
15 |10_Applicption_Auditing,1,0,0,0,0,0,0,0,0,1,,0,0,1,0,0,0,0,0,0,0. |1 screenLavout
16|10 _Applicgtion_Communication,1,0,0,0,0,0,0,0,0,1,,0,0,1,0,0,0 [?2_Header 2
S MaimMaui .
17 |10_Applicktion_Faceplates,1,0,0,0, ,0,1,0,0,1,0,0,0,0,0,0 i T iToe "
12 |10_Applicktion_ModernUl,1,0,0,0,0,0,0,0,0,1,,0,0,1,0,0,0,0,0,0, & =
19 |10_Applicktion_Paco,1,0,0,0,0,0,0,0,0,1,,0,0,1,0,0,0,0,0,0,0,0,0
20 |10_aApplicktion_Reporting,1,0,0,0,0,0,0,0,0,1,,0,0,1,0,0,0,0,0,0 Cancel < Back Einish

4. The readability can be increased even more by auto-fitting the column width depending on the table head texts.
Therefore, all columns need to be marked and the option “AutoFit Column Width” in the register card “Home" needs
to be selected.

HMI_RT_8 Scripts Overview.xlsx - Excel

’_:,‘1 Normal Bad Good Neutral

. uf
. W | Do
Merge & Center ~ | B« % » 8 98 | Formatas [Calculation | B cxolonatory ... [input 1= Format
Formatting ~ Table~
Font. 5 Alignment 5] Number 11 Styles ¢ Cell Size
fe | Screen name IC Row Height...
AutoFit Row,
A A B C D E F G H I J K L M N o L Q R S T u v w =
Col Width,
1 [Screen nalltem coun Cyclic {<=< Cyclic (>5(OtherCycl Disabled Tags-Dyn- Tags-Dyn | Total Nun Resource Events Child scre HmiFacep Hmi HrmiAlarm Hmil Trend HmiTrend HmiProce HmiFunct| HmiWebC HmiDetailHm <» ™" & ImiCh
2 01_Screen 7 0 0 [} 0 0 [} 0 0 102_Heade 0 5 0 0 [} 0 0 [} 0 0 [} AutoFit Column Width
3 [02_Heade 18 o 1 o o o 1 1 o 8 o o 1 o o o o o o o o Default Width
4 |03_MainN a4 o 0 [} o 0 [} o 0 B 0 [} 1] 0 [0 o o 0 o 0 | Visibility
5 [os_thiran 7 0 [o 0 [o 0 [9 [o [[[} 0 (i [} 0 (i [} Hide & Unhide R
5 [04_subNa £l 0 0 [} 0 0 [} 0 0 1 0 [1 [[} [0 [} [0 [} -
Organize Sheets
7 |00_Navigs 7 o o o o o o o o 5 o o o o o o o o o o o
3 |00 Navigs 7) 0 o) 0 o) 0 s 0 o [0 0 o o 0 o o 0 Bename Shect
9 |00_Navige 7 0 [[} 0 [[} 0 [s [[} o [[} [[[} [[) Move or Copy Sheet.
10 |00_Navige 7 0 0 0 0 0 [} 0 0 5 0 0 [0 0 [0 0 0 (i [} Tab Color »
11 |00_Navigs 7 0 o o 0 o o 0 o 5 o o 0 0 0 o 0 0 o 0 0 | Protection
12 |00_Navigs 7 0 0 0 0 o o 0 o 5 o o 0 0 o o 0 o o 0 O [protect Shectn.
13|00_Navigz 8 o 0 o o o o o o 8 o o 1 o o o 0 o o 0 o
14 |00_Navige 7 0 0 [} 0 0 [} 0 0 5 0 [} 0 0 0 0 [} 0 0 [} 0 [E] tockcen
15 |10_Applic 1) [[}) [[}) [1 [[} 1 0 [} [[} [} [o 0 |[F FormatCels.
16 |10_Applic 1 0 0 0 0 o 0 0 0 1 o 0 1 0 o o 0 o o 0 o o 0 o]

Figure 4-11 Preparation of the analysis data — step 2

After these two steps the readability of the screen analysis data is increased considerably, and the analysis of the project
data can be started.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 82

Analysis of an existing Project

= HMI_RT_8_Scripts_Owverview.xlsx - Excel

Insert Pagelayout Formulas Data View Help Q Tell mewhatyouwantto do
== X Cut " s ol = B T Ty
Calibri - 5 = v 2 Wrap Text r 7] Bad Good Neutral fm =
] B 2w F 1% 3
Paste . . . === = = <o oo | Conditional Formatas [calculation Explanatory .. —| | Insert Delete
= & FomatPainier | B I M- |E |- A = = = =25 [EMerge& Center w0 E To oo g B - = =
Clipboard F] Font F] Alignment ~ Number ~ Styles Cells
110 M £
o 3 c D 3 £ c H | | e
1 |Screen name Item count Cyclic (<=500ms) Cyclic (»500ms} OthercCycles Disabled Tags-Dyn-Scripts Tags-Dyn Total Number of Tags Resource list Events Child screens
P |01 ScreenLayout 7 0 0]] 0 0 0] 102 Header&00_Navi 1 0&&&03_Mair ion
5 |02_Header 18 0 1 [[[} 1 1 [8
4 03 MainNavigation a 0 0] 0 0 0 0 0 5
5 |05_ThirdNavigation 7 0 0 [[0 0 0 [9
5 |04 SubNavigation 9 0 0 0 0 0 0 0 0o 1
7 |00_Navigation_2 7 0 0 [[0 0 0 [5

Figure 4-12 Finalized preparation of the screen analysis file

4.1.4. Analysis of the Screen Overview File

This chapter contains information about how the data in the screen overview file can be related to the best practice topics
mentioned in chapter 3 and the system limit information of WinCC Unified based devices which can be found in the
respective manual of each version (see \9\).

NOTE For the following chapters be aware that the ShowScripts Add-In currently does not support the
analysis of objects and configurations inside Faceplates but only the Faceplate containers itself and its
properties.

Faceplates must be therefore analyzed manually in the library view of the TIA Portal project.

4.1.4.1. Analysis of Screen Context

With the formatted screen overview file, it is possible to see the screen context (screens with subordinate screen window
levels) very comfortably.

NOTE The screen context describes the total number of simultaneously existing screens windows with its

objects, tags and dynamizations in WinCC Unified based applications.

In the example below you can see that the screen “02_ScreenlLayout” has several child screens which means that the
screen contains several screen windows with or without configured screens.

Item count Cyclic (<=500ms) Cyclic (>500ms) OtherCycles Disabled Tags-Dyn-Scripts Tags-Dyn Total Number of Tags Resource list Eventd] Child screens KimiFacepla

01_ScreenLayout

7 0 0 0 0 0 0 0 02_Header&00_Navigation 0&&&03 MainNavigation J|
e 18 1 1
03_MainNavigation 4 5
05_ThirdNavigation E]
04_SubNavigation 1

00_Navigation_2 G 5 9
s

00_Navigation 3
00_Navigation_4 H

AN NIPArY
NN

cooocooe
o o000 e
coooooo
cooocooe
cooocoooo
o ooooo

o oo ooo

ocoooooo

Figure 4-13 Example for screen window hierarchy in “child screens” column

Every child screen which means a screen window with or without configured screen is separated from another one with
an “&" letter. If there are two “&” letters following on each other this means that there is a screen window in the
respective screen which has an empty “screen” property like shown below.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 83

02_Header|&|00_Naviga

tion_0

03_MainNavigation

=

Figure 4-14 Explanation of “child screens” column based on “01_ScreenLayout” screen

r r_'| WinCCUnifiedy 6_FeatureDemo_W2
B Add new device
i Devices & networks
» [PLC_1 [CPU 1516F-3 PN/DP]
» MTP700 [MTPFO0 Unifled Comfart]
» MTP1 000 [MTP1000 Unified Comfart]
w [MTP1 200 [MTP1200 Unifled Comfart]
1Y Device configuration
4] online & diagnostics
f Runtitne settings
hd E Screens
ﬁ Add new screen
~ [L:] 00 - Screenlayout
F | 01_ScreenLayout
[] 02_Header
[] 053_MainMavigatian
[] 04_subNavigation

[=]

Analysis of an existing Project

~ | Layers
~ [|01 _ScreenLayout
v = Layer 0
5 swHeader
v = Layer_1
5 swContent
v = Layer_2
T swThirdN avigation
= Layer_3
T2 swSubM avigation
- = Layer 4
— btnHideM aint asigation
- = Layer B
T swMainNavigation
- = Layer B
[recBackground

[7] o05_thirdNavigation
[£2] 00_Navigstion
[£2] 01 _application

v v ow

[22] 02_Matrixviewsr_popup

-

[£z] 03_Header_Fopups
» [Ez] 01_w13

» [fz] 02_v18_updl

» %] Templates

Figure 4-15 Example for screen window with empty screen property

Advantage of knowing the screen context structure

. . . - 5 M e = : b=

SRR R BG5S Properties Iﬁ Info yl@ Diagnostics i tﬂy&l_;
= Layer_|

J Properties " Events || Texts ” Expressions | = Layer 9
l% =)= Y ¢ = Layer_10
= Layer_1
Nan;e | | Static value | Dynamization (0) F Loyer 12

¥ Geners kol =
‘ » Screen i ‘ E ane i L
— 1 = Layer_14
ppearance : " = Layer_15
Appearance - style itermn | HmiScreenWindow = aner 1

In the WinCC Unified manual further information about the system limits related to screens is listed. An extract was
already mentioned in 3.7.2 Tidy up the Screen | Observe System Limits .

NOTE

Be aware that the screen related system limits mentioned in the manual always refer to the overall

screen context which can contain several further screen window levels. This can result in a larger
footprint on the runtime load due to the additional objects, tags and dynamizations.

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 84

Analysis of an existing Project

| Screens |
Unified Comfort 7-12" Unified Comfort 15-22"
Maximum size in the engineering system 20,000 * 20,000 pixels
Maximum size in runtime 20,000 * 20,000 pixels
Number of screens 1200
Number of lower-level screen windows 10
Number of objects per screen 800 1200
Number of objects from the "Controls" area per 40 80
screen
Number of tags per screen 600 800

Figure 4-16 Screen related system limits of a Unified PC station

In complex applications it can be hard to check the whole screen context in the engineering system. Same applies to the
runtime application itself where screen windows can be invisible but still contain loaded screens with all its objects, tags
and dynamizations.

The ShowsScripts Add-In provides a better understanding of the screen context in your application with the child screens
information. This helps for avoiding overloaded screen contexts in an early stage of the project development or for later
implementation of measures to reduce the load footprint by using the best practice recommendations in chapter 3.

Since the content of Faceplate instances on screens is not evaluated yet by the ShowScripts Add-In, the number of objects
generated by them needs to be counted manually.

4.1.4.2. Usage of Controls

The exported screen overview file can also give you further hints about screens containing controls which means basic,
advanced and custom controls. As already mentioned in chapter 3.71.1 the rendering footprint of controls can be much
higher than other objects as basic objects and elements.

If you detect the usage of several controls within one screen or screen context evaluate a possible reduction of these
controls like described in chapter 3.1.5. Wherever possible from operating point of view, splitting controls in different
screens or screen contexts can also have a positive impact on the loading time of a screen. Especially two controls of the
same type like in the figure below (marked with 1), can often be combined by one.

Screen name Item count Child screens HmiAlarmControl HmiMediaControl HmiTrendControl Hmi
01_Screenlayout 7 02_Header&00_Navigation_0&&&03_MainNavigation 0
02_Header 18
03_MainNavigation 4
05_ThirdNavigation
04_SubNavigation
00_Navigation_2
00_Navigation_3
00_Navigation_4

10 |00_Navigation_5

11 |00_Navigation_6

12 |00_Navigation_7

13 |00_Navigation_0

14 |00_Mavigation_1

15 |10_Application_Auditing

16 |_1CLAppIicatiDnJZommunication

W~ W N =

}DDDDOGDDDDDDD

at

]
o o g N}DDDDOOOOODDDD
o

17 |10_Application_Faceplates
18 |10_Application_ModernUl
19 |10_Application_PaCo

©C 0OQ0o|lO0 0OC O 000000 ooo

e Ll L B R R R R T]

o o gl

Figure 4-17 Information about control usage per screen

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 85

Analysis of an existing Project

4.1.4.3. Usage of Dynamizations

There is even more object related information that can be analyzed by use of the screen overview file of the ShowScripts
Add-In. You can find information about tags, dynamizations and events configured on each screen. This helps you to get
an overview on which part of the application to look at when opening the TIA Portal project for further analysis, e.g. when
cyclic scripts are used on several screens (refer to section 3.2).

The information can be also taken as reference if you want to have a closer look on the scripts of certain via Visual Studio
Code (see chapter 4.1.5).

The related columns in the screen overview file will be elaborated more in detail in the following sections:

Used tags per screen

The "total number of tags" is the sum of all tags that are used as trigger on the screen. These trigger tags will be
subscribed to the PLC on screen loading and will influence the screen loading time. Trigger tags are used in
dynamizations only.

1 | Screen name | Total Number of Tags |
165|69_a_Subscription 4
166 69_b_RootWindow 0

Figure 4-18 Total tags column in overview file

NOTE Expressions for the dynamization of objects (available since WinCC Unified V18) cannot be evaluated
by the ShowScripts Add-In yet and are therefore not included in the counts of the screen overview file.

Examples for the described dynamizations can be found in chapter 3.2 Use of Dynamizations.

Tag dynamizations

The “Tags-Dyn” column lists the amount of tag dynamizations configured on a screen.

1 |Screen name gs-D
165|69_a_Subscription 4
166 69_b_RootWindow 0
[Properties |, Info @] %/ Diagnostics | Plug-ins
J Properties H Events H Texts H Expressions ‘
PEEYT e Tag
Name Srarlc‘va\ue # Dynamization (1) Process Settings
b Mode Inputioutput None
b Outputformat o Tag: |fnyTag [l [7] Use indirect addressing
» Process value 0 Tag [+ PLC tag: A [Read-only

~ Appearance
Appearance -style item | HmilOField
» Background -ahemativ...[Jll] 128, 128, 128 None
» Background - color []2s5.255.255 None

Address: Int

Type

Figure 4-19 Tag dynamization column in overview file

Script dynamizations (tag triggered)

The “Tags-Dyn-Scripts” column lists the amount of script dynamizations based on a tag trigger per screen.

Screen name | Tags-Dyn-Scripts |
01 LiveDemo JS 2
02_HandsOn_JS 2

Figure 4-20 Script dynamization (tag triggered) column in overview file

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 86

Analysis of an existing Project

Script dynamizations (cyclic)

There are three columns referring to cyclic script dynamizations based on default available and own defined cycles.

Screen name | Cyclic (<=500ms) Cyclic (>500ms) OtherCycles |
01_LliveDemo_JIS 0 0 0
02 _HandsOn_JS 0 0 0

Figure 4-21 Script dynamization (cyclic) columns in overview file

Events
The “Events” column lists the sum of following configurations:

14.Events on screens and screen items
15.The amount of “on-change” triggered scripts at properties of screen items

Screen name Events
01_LliveDemo_JIS 6
02 _HandsOn_JS 1

Figure 4-22 Events columns in overview file

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 87

Analysis of an existing Project

4.1.5. Analysis of the exported Scripts

Next to the screen overview file the ShowScripts Add-In exports all configured scripts within a screen and its objects.
As shown below two export files (js-format) for each screen are generated:

1. “Dynamizations” file: contains all script dynamizations configured on a screen and its objects.
2. "Events” file: contains all “on-change” triggered scripts (on screen object properties) and scripts triggered on events (of
screens and objects)

Documents » TI& Portal projects » Unified_Dermo i B FeatureDerno_W2 > UserFiles » MTP1200

MName . Type

Figure 4-23 Script export files of ShowScripts Add-In

NOTE Currently the ShowScripts Add-In does not support the export of scripts inside Faceplates, global
modules, scheduled tasks and libraries. The scripts inside Faceplates and scheduled tasks must be
analyzed separately in the TIA Portal project.

For the global module and library scripts there is an alternative since WinCC Unified V19 to retrieve
script exports by use of the WinCC Unified JS Connector (see chapter 4.2)

Script analysis using VS Code
All exported scripts can be analyzed quite comfortably according to the best practice recommendations in chapter 3.

This can be done with any editor like Notepad++ for each file separately or if you want to execute a global search through
all the script files by use of the free of charge code editor “Visual Studio Code” (VS Code).

Therefore, download VS Code and once it is installed follow the further steps.

1. Open the program and drag & drop the whole export folder of ShowScripts Add-In from the Windows Explorer into the
VS Code “Explorer” area.

~ NO FOLDER OPENED

l B B~ | Userfiles

File Home Share View

You have t added a folder to the s
Open Folder
< v 4 l WinCCUnifiedV18_FeatureDemo_V2 » UserFiles

You can clone a

Run and Debug (Ctrl+Shift+D) i Name Date modified
o Quick access

Clone Repasitory 30/11/2023 13:40 File folder

it how to use Git and source control in

Create .NET Project

Figure 4-24 Opening script export folder with VS Code

B Documents

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 88

Analysis of an existing Project

2. Afterwards the content of the export folder will get listed in the left area of VS Code (1). As soon as you select any of
the script export files the content will be displayed in the work area of the application (2).

) File Edit Selection View Go Run Terminal Help @ £ MTP1200

EXPLORER &1 _ThirdNavigation Upd1_Eventsjs X

~ MTP1200 GEULa = _ThirdN

n.HighlightButton
.AlternateBackColor = @

Figure 4-25 Opened script folder in VS Code

3. The identification of the script type within WinCC Unified is also possible via the function title. In the figure below two
examples are shown:

a. "On-change" triggered script on the property "AlternateBackColor" of the screen "00_C&T_ThirdNavigation_Upd1"
b. "Click left mouse button" event on the object "txtThirdNav1"

JS 00_C&T_ThirdNavigation_Upd1_Eventsjs X

Navigation.HighlightButton("
e AlternateBackColor = 9;

_txtThirdNavl Tapped() {

module_navigation.Hj

err

Figure 4-26 Extract of script export in VS Code

{ibonoocamanoaanacy
o = ! 9

a @ g
| FLTEEO) e e e [Prop [Events | Texts | Expressions |
2BRE [u &) 23 Glabal definition =%| sy t T RHE S X%
- - 1 export fumction 0 o
Mame Staticwalue # Dynamization (1) -
T Appearance . z i Mame Walue
3 Deactivated - :
~ Background -shermativ... [_] 235,235,235 None s T z Navigation HighlightButtan
b ; i [l ctick left mouse buttan Buttonhame (optional) taThirdNaw)
Changs ﬂ_ 5 if (Screen.Altern Fress key ST 5
Quality code change Mone 3 'Elgh ANgESCrEen
Rel ks
» Background - color [] 240, 242, 243 none 7 Screen.Alternat c:::jehteinuse - Screen nEre 20_Certificate_Manager
» EBackground-fill psmern Solid Mone] ' g Screen window path ~iswCantent
> Format ER =<hdd functior:-
Figure 4-27 Location of the exported scripts in TIA Portal project
NOTE Be aware that the ShowScripts Add-In also exports function lists as scripts (see example B). The reason

is that system functions are only engineering related but during runtime they get executed as script
code as well.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 89

Analysis of an existing Project

4. By the use of the global search function of VS Code the exported scripts can be analyzed according to the best practice
recommendations in chapter 3.

5. In the example below the scripts get scanned for example for the keyword "SetTagValue" to be able to find relevant
scripts for the replacement with tag sets as described in chapter 3.4.2.1.

J5 07_LiveDemo_Communication_Events,js X

~ J5 01_LiveDemo_(
HMIRuntime.Tags.S

tTagValue("HN

etTagValue("HMI_OfflineV export _01_LiveDemo_Communication_Loaded() {
ntime.UI.SysFct.SetPr tyValue(

gValue("Fac _Button_1_Tapped() {

ct.SetTagValue("Faceplate Dat: 6 HMIRuntime.Tags. _SetTagValue("HML
tTagValue("Faceplate_|

HMIRuntime.Tags. ct.SetTagValue ("HMI_Of

Figure 4-28 Keyword search in VS Code for "SetTagValue"

Other examples to search for could be among others:

e «for» to find unnecessary loop runs
e «alarm » for the usage of computing-intensive methods, e.g. GetActiveAlarms()
e «await » Numerous uses of await in connection with asynchonous function calls

NOTE Furthermore, Visual Studio Code can use the style guide configuration, that offers verification and
automatic correction of script code inside the Visual Studio Code editor according to the programming
style guide specifications. The style guide configuration can be found also on SIOS

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 90

https://support.industry.siemens.com/cs/ww/en/view/109801600

Analysis of an existing Project

4.2. WinCC Unified JS Connector

A first step for the screen related script export and analysis can be done by use of the ShowScripts Add-In. If you detect
the usage of global module scripts in the screen related scripts you can make use of the “Simatic WinCC Unified JS
Connector” which is a Visual Studio Code extension to export, edit and import these scripts of the global modules.

NOTE The WinCC Unified JS Connector extension is supported since WinCC Unified ES V19.

Below you can see an example for the usage of global modules. If you want to see the content of the used scripts in the

imported module the WinCC Unified JS Connector can be used.

g Properti

Properties Events || Texts || Expressions |

. © .
Activated

= Global definition| =% Synchronons 3
Deactivated /

import * as Eodula_glahal_modula from "Elohal mudula”:
—
Fress key
Release key [

Click right mouse bu...

-

oy

kS

export function txtExtended OnTapped(item, x, ¥, modifiers, trigger) {

HNTRuntime . UI.Style = "Extendedityle™;

odule global moduls.FlobalFunction) ;f

1
2
3
4
5
&
7

¥

Figure 4-29 Usage of a global function in WinCC Unified script editor

The WinCC Unified JS Connector extension is free of charge and available in a separate entry of the Siemens Industry
Online Support (SIOS). With the extension following workflow can be applied by users for project analysis and

optimization:

1. Export of scripts in global modules from the TIA Portal project

/INCC UNIFIED)

|| = | Global module

> CONMNECT C ‘ Home Share View

9_ .
* Name

3 Quick acfess

i) I Deskto -
TIA portal instance: Global modulehmi
‘ Downlogds

|5 Documfints

dle

Il Global medule.hmi

&= Pictur

- v <« Documents » DemoProjekt_WorkDirectory » MTP1200 »

Date medified

Scripts » Global module

Type Size

File folder

JavaScript File 1KB
i 1KB

Project Scope: [2d456169pc

Unified Devices D Music
B Vvideos

> EXPORT FROM TIA (UNIFIED DEVICES) @ OneDrive

3 This PC

J 3D Objects
[Desktop

|=| Documents
4 Downloads
J'! Music

&= Pictures

m Videos

Export fil ‘i Local Disk (C:)
ort files

- Mew Volume (D7
. Exporting Modules from Tia portal will create new files,
F Iready by name will be itten — Mew Volume (0 ¥
3 items

» IMPORT TO TIA (UNIFIED DEVICES)

~ LOGS

Figure 4-30 Export function of the extension (1) with the exported files in the work directory (2)

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 91

https://support.industry.siemens.com/cs/ww/en/view/109825899

Analysis of an existing Project

2. Analysis and adaption of the scripts in VS Code (according to the best practices in chapter 3)

J5 Global module.hmijs ®

DELVSE S odule > J5 Glo
r myValue = R

pathToProject

> Nai i 3 rt GlobalFunction() {
.gitignore

ua_rtdts HMIRuntime.Trace bal Funct

1

WebControlURL(fileName, path) {

url = - + path + "/" + fileName;
HMIRuntime.Trace p ath:" + url);

HMIRuntime.Tags ").Write(url)

Figure 4-31 Analysis of an exported global module script via VS Code

3. Import of the adapted scripts to the TIA Portal project

WINCC UNIFIED J5 COMNI

> CONNECT

TIA portal instance:

Project Scope:

Unified Devices

~ EXPORT FROM TIA (UNIFIED DEVICES)
> IMPORT TO TIA (UNIFIED DEVICES)

Import files

Importing to TIA portal will create new modules. Modules already exist
overwritten

Figure 4-32 Import of scripts to the TIA Portal project

For more detailed information about the installation and usage of the WinCC Unified JS Connector please refer to the
provided manual in the extension related SIOS entry.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 92

https://support.industry.siemens.com/cs/ww/en/view/109825899

Analysis of an existing Project

4.3. Runtime Analysis

If you have successfully analyzed the project using the above mentioned ShowScripts Add-In and the WinCC Unified JS
connector and applied changes and optimizations in the screen engineering or script code, it is possible that there are still
misbehaviors during screen change or the screen loading time is still not sufficient enough.

To find further potential for project optimization it can be useful to analyze problematic screen change more in detail by
use of following tools:

1. RTIL Trace Viewer (for all Unified based devices)
2. Script Debugger for WinCC Unified (only for Unified PC Runtime and Panel Simulation at the Engineering PC)
3.

4.3.1. RTIL Trace Viewer

The RTIL Trace Viewer is an external application provided with the WinCC Unified installation. It displays all available trace
messages that a Unified Basic/Comfort Panel or PC Runtime provides during runtime operation.

NOTE The setup procedure for using the RTIL Trace Viewer on WinCC Unified based devices is described more
detailed in the following FAQ:

Use of Trace Viewer with WinCC Unified Comfort Panel or WinCC Unified PC Runtime

The procedure described for the Unified Comfort Panels also applies the identically for the Unified
Basic Panels.

Usage of the RTIL Trace Viewer for project analysis
The Trace Viewer can be used for further analysis of following scenarios:

1. When capturing a screen change there can be further errors or warnings which are related to script execution or in
general to the project configuration.

2. These trace messages can show you a certain influence on the overall screen change performance and need to be
resolved as far as possible.

3.

An example for such errors is visible below in which a configured script tries to access an object (“Button_4") in the
runtime which does not exist and therefore error messages are shown.

N Properties Tl

‘Pmperties || Events ” Texts || Expressions |

\w |=| Global definition j Synchronous ﬂ 'mi x f“’ Gd
export function ScreenﬁliﬂnLoa;d(item) {
for (let i = 1; 1 < &; i++) 4
Screen. Items ("Button_ " + i).BackColor = HMIRuntime.Math.RGE(0, 255, 0)
}

Click left rmouse button

Click right mouse bu...

i

Cleared y
Trigger hotkey

Figure 4-33 Script access to buttons on a screen

4. The execution result of the script is shown understandably in the RTIL Trace Viewer and needs to be resolved by
adapting the loop in the script.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 93

https://support.industry.siemens.com/cs/ww/en/view/109777593

w

Analysis of an existing Project

& TraceViewer
File Edit Wiew Columns Filter Tools About

B . = B
sH= |l vhEae B
Haost System Application Subsystern Module Sewerity[1 Timestamp /| Process/Thread

SIM_SIEMEMS_. GT®RT! J ScriptFw CISEngineada. Error 2023.12.20 01:39:25.751942 27640 (0x476. session: 0003, trace: Engine ExecuteScript Resul

session: 0003, trace: Engine EXecuteScript Result is empty and error is:

Function: [/screen_modules/HMI_RT_2::Screen_1/Events.js].[Screen_1_onLoaded]

Error: Jscreen_modules/HMI_RT_Z:iscreen_1/EVents.js:is: uUncaught TypeError; Cannot set properties of undefined (setting 'BackColor')
Screen. Items ("Button_ " + i).BackColor = HMIRuntime.Math.RGE(D, 255, 013

A

TypeError: Cannot set properties of undefined (settinag 'BackColor')
at Object.screen_i _Onloaded (/screen_modules/HMI_RT_z2::5creen_1/Events.js:s:43)

Figure 4-34 Result of script execution in the trace viewer application

NOTE For better analyzability of the traces in the RTIL Trace Viewer, special display filters can be applied to
the default view. In order to see just the script related traces you can set the filter for “Subsystem” to
“ScriptFW”.

% TraceWiewer
File Edit “iew Colurmns | Filker Tools About

7 Host L] -
Systermn
Application Subsystem Module
i Clear filter
Module
3 N A
everty 03
P . Flags L4
session: 0003, trace: 4 error
Function: [/sér‘een_mn p SThread ¥ SLDIMERVER ren_1_0
Error: /screen_module o255 (i) ChromAp\ nt Type
Screen, Ttems ('But Message » GE(O, 2

Care

TypeError: Cannot set Tor'l
at gbject.screen_ Clear all filters I ScriptFy FEE"'I_J-/
yitembunction

UAFoundation
UaScriptinglntegration
USCS

VCS

Figure 4-35 Script filter in RTIL Trace Viewer

The Trace Viewer can be an alternative to detect and understand possible failures of scripts in the project. As there is
no further debugging possibility on the Unified Basic/Comfort Panel hardware the usage of trace messages in
conjunction with the RTIL Trace Viewer can help to:

e See which scripts get executed in certain operating scenarios
e Check how often these scripts are executed
e How long the scripts are being processed

For the Unified PC Runtime, a useful alternative to the Trace Viewer could be the Script Debugger which is described in
the next chapter.

NOTE Further information about the usage of the trace viewer and configuration of trace messages can be
found in the document SIMATIC WinCC Unified - Tips and Tricks for Scripting (JavaScript) in chapter
5.16.2 “Diagnostics via RTIL Trace Viewer".

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 94

https://support.industry.siemens.com/cs/ww/en/view/109758536

Analysis of an existing Project

4.3.1.1. Additional Flags

For further analyses additional options can be enabled in the Trace Viewer, to get the following information:

e See which scripts get executed in certain operating scenarios
e Check how often these scripts are executed

e How long the scripts are being processed

e Number of variables read during screen construction

The Performance Flag

® Profile ? X
¢ locathost/ - Severity Flags
= localhost/SIM_00000QESE_V17_15Nov22 V18 % o
+ GfxlicenseServer(101) - _ 8 (CALUECME(KS
= GfxRTS(22) NFR
e (5 o)
« AUDIT - Warming :
+ AUDITVIEWER
% CC
* ChromApi < Info
* CommonH: .
+ Core el (G | Verbose]
¢ CpmRuntimeService - —
@ Géx c Debug
+ lActiveAlarmClient
+ LocalizationService = (% cal
+ Odk
+ OpennessDataSources
* PHI Detads
- PHLG Regetry Sze: 80152 (78 K8)
- i Buffers: 225/1000
Host:
+ PersistentBuffer System: SIM_O0000QESS_V17_15Nov22_Vi8
¢ QueryEngine Appication: GHRTS(22)
* Query Filter Process ID: 23964
+ REP Subsystem: ScrpttW
< RSS Buffer ID: 1073742924
B SHC Header Sze: 0412 (49 K8)
Stream Sze: 1048576 (1 M8)
= ScriptfW Modues: 23/50
AlarmSubscriptionBase (Info) Module: SariptComp
CISEngineAdapterV8 (Info) Modke 10: 0
ScnptAlarmloggingObjectModel (Info) Filter: 0x00000025
ScriptAlarmObjectModel (Info) Flags: 4/28

Save Profie AsDefouit| Saveprofie | Losdprofie |

Figure 4-36 Set the performance flag

With the flag activated, you gain an overview of the amount of scripts being executed. This allows you to infer whether
scripts are recurring, indicating a loop or cyclic trigger. Additionally, you receive the following information such as
DoCommand (script duration) and ExecuteCommand (script trigger duration) times. You can analyze these times and
improve them through script optimization.

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 95

The STAT_HISTO Flag

Analysis of an existing Project

- ManagerRequestHandler {Info)
- MameService (Info)

- PreShutdown (Info)

- Rdf {Info)

- Redundancy (Info)

- Report (Info)

EC L

Statistics (Verbose)

~TBD (Info)

- Thread (Infa)

-~ UserDefined (Info)
[+ DriverFramework
[+ DriverStub

[+ OMS+
[+
[+

- PersistentBuffer
H- Query_Filter
[+ 57PlusComDriver LI

[l W T SOVA R A e 28

%‘ﬂ' Profile 2 %
[+ GraphOLServer(25) =] [Severity ~Flags
[+ OpennessManagerHost.exe
W WCCILS7pComDre(1) [] DPCOMNF_STATISTIC
b e =1 g e s e - [KPIBcrninternals
& ComDrv [KPldisabled
e c | Warning O KPlpublish
= Core [KPlstate
MSG_STATISTIC
TETEOp Restore (Info) c O =
- Communication (Info) Info E n\"EE_S_IAHSHC_DEBUG
-+ Component (Info)
- Concurrent (Info) g Verbose |V STAT_HISTO l
-~ Datafccess (Infa) _ i
- Distribution (Info) c | [STAT_SIMPLE
-~ (eneral (Info)
- |InternalChrominterfaces (Info)
-~ Localization (Info) C | Call
- MRH (Info)
- ManagerExtension (Info) I

Registry Size: 80152 (75 KiB)
Buffers: 1431000

Host:

System: S5IM_Projectl
Application; WCCILS7pComDrv (1)
Process ID: 13663
Subsystem: Core

Buffer ID: &

Header Size: 90572 (88 KiB)
Stream Size: 1048576 (1 MiB)
Modules: 2330

Module: Statistics

Module ID: 5

Filter: 0x00000045

Flags: 1228

Save Profile As Default| Sawve Profile Load Profile |

Figure 4-37 Enable the STAT_HISTO flag

Your settings are now applied. If you want to reuse them even after the application is restarted, save the current profile.

Close

Using this flag, you gain an overview of how many variables are being read during screen construction (screen load).

The quantity of variables read during screen construction (screen load) impacts performance.

4.3.2. Script Debugger

On a Unified PC Runtime and Panel Simulation at Engineering PC there is the possibility to use the Script Debugger in

combination with Google Chrome.

The debugger offers you further possibilities for script analysis offering typical functions like setting breakpoints and step-

by-step execution.

NOTE
in the WinCC Unified V19 manual.

Usage of the Script Debugger for screen change analysis

A detailed description about the setup and usage of the Script Debugger in WinCC Unified is available

With the Script Debugger of the Unified PC Runtime certain operation scenarios can be further evaluated to:

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 96

https://support.industry.siemens.com/cs/ww/en/view/109828368/164401820939

Analysis of an existing Project

e See which scripts get executed in certain operating scenarios. When a breakpoint is set e.g. in a loaded event, by
clicking through the single steps, also all following script executions are shown.
e Check how often these scripts are executed, by counting how often a breakpoint is reached in a script.

If you want to debug the script executions during the screen change the project needs to be prepared in a certain manner
to be able to debug the simultaneously executed scripts. The following steps show how to configure a breakpoint in the
load event of the base screen and trigger the loading again for stepping through all scripts that are executed during the
initial screen load as this is the more difficult configuration from the two mentioned above.

1. Activate the script debugger in the runtime manager

Settings X

General Security OPC A export User management Certificates Script Debugger Telemetry settings

Screen Debugger

Enable: @

Port: CEEH]]

Scheduler Debugger
Enable: @

Port: 9224

The changes are only effective after restarting the project in runtime. f

Figure 4-38 Enable script debugger in runtime manager settings

2. Configure a code in the loaded event of the projects base screen. This is used later to set a break point at the position
where the base screen starts loading. Define an event that you can trigger during runtime (e.g., through a mouse click
event of a screen item), that toggles the base screen from one that is not your current base screen and then back to
the original base screen. If you only set the base screen again to the original one, the loaded event will not be
triggered.

Properties Events || Texts || Expressions |

ﬂ =] Global definition E3| synchrenous T3 e x e Cﬂi

Click left mouse button i export function _l1 Screenlayout OnLoaded{item) |
Click right mouse butt -
ICK M19TTL MOUsE button 3 const thisIsATest = Te_:_r.a{"") .Read();
i tooded :
Cleared 5 HMIRuntime.Trace("Test on loaded BasseScresn");
Trigger hotkey g 1

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 97

Analysis of an existing Project

Properties Events ” Texts ” Expressions |

+t T EHE @ X
Activated Marme Value
Deactivated * ChangeScreen
@ Click left mouse buttond Screen name Screen_1
Press key Screen window path Base screen
Release key * ChangeScreen
Click right mouse button Screen name 01_ScreenLayout
Screen window path Base screen
<Add function=

Figure 4-39 Refresh of the base screen and code for the loaded event

W

Start the Runtime
5. Open an additional browser window and type: chrome://inspect/

E WinCC Unified RT % @ Inspectwith Chrome Developer X +
< (& & Chrome | chrome://inspect/#devices

DevTools Devices

Devices

Discover USB devices Port forwarding...
Discover network targets

Open dedicated DewTools for Node

Remote Target «ocaisosr

Target frace

DefaultUser@localhost WCS_1 Dynamics { DefaultUser@localhost VCS_1 Dynamics)
inspect pause

DefaultUser@localhost WCS_1 Events (DefaultUser@localhost VCS_1 Events)
insfect pafse

Figure 4-40 Chrome dev tools page
6. Click on the inspect link of the event context. With that, a new browser client is started

& DevTools - o x

€2 C B & i [0 Eements Console @

Styles Computed Layout Eventlisteners >

te thov .cls

i Console What's New X b

Highlights from the Chrome 120 update

Third-party cookie phaseout

The Issues panel now warns you about the
cookies that will be affected by the upcoming
deprecation and phaseout of third-party cookies

Figure 4-41 DevTools browser window

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 98

Analysis of an existing Project

7. Configure the browser window by dragging the right window more to the left and switch to the source tab. Unfold the
(no domain) directory and select your base screen Event.js. There is the previous defined code in the loaded event of
the base screen. The list shows all current loaded scripts. The list therefore differs depending on the current opened
screens.

@ Devools

« 2 C 0 B K [0 Eemens @m\e

Network Performance Memory Application Security Lighthouse Recorder & Performance insights 2

Page Workspace Overrides Contentscripts Snippets f [[@ /screen modules.yout/Eventsjs X /screen modules..nctionlistsjs >

/global_modules/Navigation.js

#/Insert definitions for events here

[/screen_modules/Unified PC RT_4
T V=creen_modules/Unified PC RT_2:
[/screen_modules/swContent/Unified PC RT_4:10_Application/FunctionListsjs
[/screen_modules/swHeader/Unified PC RT_4:02_Header/Functionlistsjs

ScreenLayout/Events)s

ScreenLayoutFonctionLists s

1
2
3
5 export function _1_ScreenLayout_OnLoaded(item) {
7 const thisIsATest = Tags{"myTag").Read();

3

HMIRuntime .DTrace("Test on loaded BaseScreen”);
[fsereen. inNauigation/Unified PC RT 4:03 MainNavigat 'unztiﬂnLﬁ ?
[Jsereen b Unified PC RT 4:04. Fventsjs 1
[sscreen gation/Unified PC RT_4:04 ctionlist -

[/sereen_modules/swThirdNavigation/Unified PC RT_4:05_ThirdNavigation/Eventsjs
[/screen_modules/swThirdNavigation/Unified PC RT_4:05_ThirdNavigation/Functionl

Figure 4-42 Script debugger - set break point

8.

9. Set a break point in the loaded event

10. Go back to the Runtime and trigger the event for the base screen change

11.The debugger browser windows will automatically open and jump to the breakpoint. You can also see on the right
side the values of the already executed lines. Klick on the “Step into next function” button to go step by step through

the script

@ Detooss

WD) SHRIESR OTrace!

Figure 4-43 Script debugger - jump into break point

You can follow that global modules are loaded

@ oevioss
C bR

SIS S

@ Detugger paused

fed PC RT_4:01. Screentayou.

aMavigation
» MiceTileNavigation
» HighlightButton: # Hi
» HighlightThirdNay]

» Shourainéavigatil
» ShouSubavigation:
» ShowThiraNavigation
» ShouTileNavigation

Figure 4-44 Script debugger - loading script modules
And loaded event of nested screen windows and Faceplates

® owtoon
R

© Detugger paused

Figure 4-45 Script debugger - loaded event screen window

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 99

Analysis of an existing Project

Every script that is executed will be shown. Once you want to end the debugging and execute the rest of the scripts at
once, click on the “Resume script execution” button. If there are more breakpoints defined, the debugger will jump to the

next breakpoint.

I R S T -~

F

Resume script execution - F& - Cirl +%,

Figure 4-46 Resume script execution

12.

13.For every new download a new DevTools session needs to be opened. That is the reason for the manual trigger of the
loaded event of the base screen

B WinCC Unified RT X @ Inspectwith Chrome Developer X E WinCC Unified RT ® | +
& C @ Chrome | chrome://inspect/#devices
DevTools Devices

I Devices
Discover USB devices Port forwarding...
Discover network targets

Open dedicated DevTools for Node

Remote Target .ocainosr

Target trace

DefaultUser@localhost VCS_1 Dynamics (DefaultUser@localhost VCS_1 Dynamics)
inspect pause

DefauliUser@localhost VCS_1 Events | DefaultUser@localhost VCS_1 Events)
inspect pause

DefaultUser@localhost VCS_2 Dynamics (DefaultUser@localhost VCS_2 Dynamics)
inspect pause

DefauliUser@localhost VCS_2 Events | DefaultUser@localhost VCS_2 Events)
inspect pause

Figure 4-47 Google Chrome inspect page for selection runtime session

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 100

Appendix

5. Appendix

5.1. Service and support

SiePortal

The integrated platform for product selection, purchasing and support - and connection of Industry Mall and Online
support. The SiePortal home page replaces the previous home pages of the Industry Mall and the Online Support Portal
(S10S) and combines them.

e Products & Services
In Products & Services, you can find all our offerings as previously available in Mall Catalog.
e Support
In Support, you can find all information helpful for resolving technical issues with our products.
e mySieportal
mySiePortal collects all your personal data and processes, from your account to current orders, service requests and
more. You can only see the full range of functions here after you have logged in.

You can access SiePortal via this address:

Technical Support

The Technical Support of Siemens Industry provides you fast and competent support regarding all technical queries with
numerous tailor-made offers — ranging from basic support to individual support contracts.
Please send queries to Technical Support via Web form:

SITRAIN - Digital Industry Academy

We support you with our globally available training courses for industry with practical experience, innovative learning
methods and a concept that's tailored to the customer’s specific needs.
For more information on our offered trainings and courses, as well as their locations and dates, refer to our web page:

Industry Online Support app

You will receive optimum support wherever you are with the "Industry Online Support" app. The app is available for iOS
and Android:

D A.".ai IEhIE on thF" _ ANDROID APP ON

App Store '0' Google play

Entry ID: 109827603 | V2.0 | 06/2024 © Siemens 2024 | 101

https://sieportal.siemens.com/en-ww/home
https://support.industry.siemens.com/cs/my/src?lc=en-WW
https://www.siemens.com/sitrain
https://apps.apple.com/us/app/siemens-industry-online-support/id478868966
https://apps.apple.com/us/app/siemens-industry-online-support/id478868966
https://play.google.com/store/apps/details?id=com.siemens.industry.onlinesupport&hl=en
https://play.google.com/store/apps/details?id=com.siemens.industry.onlinesupport&hl=en

5.2. Links and literature

Nr. Thema

Appendix

\T\ Siemens Industry Online Support
https://support.industry.siemens.com

\2\ Link to this entry page of this application example
https://support.industry.siemens.com/cs/ww/en/view/109827603

\3\ Beginners Guide: Quick entry and conversion with WinCC Unified
https://support.industry.siemens.com/cs/ww/en/view/109810917

\4\ HMI design with the HMI Template Suite
https://support.industry.siemens.com/cs/ww/en/view/91174767

\5\ SIMATIC WinCC Unified Tutorial Center (Videos)
https://support.industry.siemens.com/cs/ww/en/view/109782433

\6\ SIMATC WinCC Unified — Tips and Tricks for Scripting (JavaScript)
https://support.industry.siemens.com/cs/ww/en/view/109758536

\7\ TIA- Add-In -ShowScripts
https:/lgithub.com/tia-portal-applications/TIA-Add-In-ShowScripts

\8\ Developing WinCC Unified JavaScript code and checking style guide with Visual Studio Code
https://support.industry.siemens.com/cs/ww/en/view/109801600

\9\ SIMATIC HMI WinCC Unified V19 for system limits
https://support.industry.siemens.com/cs/ww/en/view/109828368/170192329611

\10\ SIMATIC WinCC Unified Corporate Designer V19
https://support.industry.siemens.com/cs/ww/en/view/109824234

5.3. Change documentation

Version Date Modification
V1.0 01/2024 First version
V2.0 06/2024 Update for V19 Upd2

Entry ID: 109827603 | V2.0 | 06/2024

© Siemens 2024 | 102

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109827603
https://support.industry.siemens.com/cs/ww/en/view/109810917
https://support.industry.siemens.com/cs/ww/en/view/91174767
https://support.industry.siemens.com/cs/ww/en/view/109782433
https://support.industry.siemens.com/cs/ww/en/view/109758536
https://github.com/tia-portal-applications/TIA-Add-In-ShowScripts
https://support.industry.siemens.com/cs/ww/en/view/109801600
https://support.industry.siemens.com/cs/ww/en/view/109828368/170192329611
https://support.industry.siemens.com/cs/ww/en/view/109824234

	Engineering guideline for WinCC Unified
	1. Introduction
	1.1. Overview
	1.2. Components used
	1.3. Explanation of the Symbols used

	2. Preliminary Information
	2.1. Reasons for using the Engineering Guideline
	2.2. Workflow for new Configurations
	2.2.1. Use Case: State dependent scripting: Show / Hide screen content

	2.3. Relevant sections for Screen change

	3. Best Practices of Screen Engineering
	3.1. Use of Screen Objects
	3.1.1. Screen Object Selection
	3.1.1.1. Use Case: Colored Square Box
	3.1.1.2. Use Case: Button without Implementation of the Press and Release Event
	3.1.1.3. Use Case: Simple Text Label
	3.1.1.4. Use Case: Colored Screen Background
	3.1.1.5. Use Case: Custom Styles

	3.1.2. Tidy up the Screen / Observe System Limits
	3.1.3. Usage of Screen Windows
	3.1.4. Screen Object Visibility
	3.1.4.1. Use Case: Visibility Dynamization of multiple Screen Objects by the same Condition

	3.1.5. Unified Controls
	3.1.5.1. Use Case: Different Settings in Runtime for Unified Controls
	3.1.5.2. Use Case: Alarm Control
	3.1.5.3. Use Case: Alarm Line Custom Solution

	3.1.6. Graphics and SVGs
	3.1.6.1. Use Case: Visualize Patterns and composed Objects
	3.1.6.2. Use Case: Composed Objects with Dynamizaton → dynamic SVG

	3.2. Use of Dynamizations
	3.2.1. Simple Tag Dynamization
	3.2.2. Script Dynamization
	3.2.3. Expressions
	3.2.3.1. Use Case : Dynamize a Property depending on Single Bits

	3.2.4. Further Options

	3.3. Use of Faceplates
	3.3.1. Essential Insights into Faceplate Usage
	3.3.1.1. Use Case: Faceplate that is not always Visible in Runtime
	3.3.1.2. Use Case: Strings in the Property Interface
	3.3.1.3. Use Case : Dynamic Data Connection for hierarchical Faceplates

	3.3.2. Text Lists in Faceplates
	3.3.2.1. Use Case: Transmitting a Subset of the Text List
	3.3.2.2. Use Case: Static use of Text Lists
	3.3.2.3. Use Case: Dynamic use of Text Lists

	3.4. Use of scripts
	3.4.1. Script Triggers
	3.4.1.1. Use Case: Scripts using the same Trigger Tag
	3.4.1.2. Use Case: Trigger Scripts unrelated to Screen Object Properties

	3.4.2. Efficient Code
	3.4.2.1. Use Case: Write and Read multiple Tags

	3.5. Others
	3.5.1. Acquistion Cycle
	3.5.1.1 Use Case: Writing a PLC Tag in Screen Loaded Event

	3.5.2. Use Case: PLC UDT Arrays with Multiplexing

	4. Analysis of an existing Project
	4.1. ShowScripts Add-In
	4.1.1. Download and Installation
	4.1.2. Usage of the ShowScripts Add-In
	4.1.3. Preparation of the Screen Overview File
	4.1.4. Analysis of the Screen Overview File
	4.1.4.1. Analysis of Screen Context
	4.1.4.2. Usage of Controls
	4.1.4.3. Usage of Dynamizations

	4.1.5. Analysis of the exported Scripts

	4.2. WinCC Unified JS Connector
	4.3. Runtime Analysis
	4.3.1. RTIL Trace Viewer
	4.3.1.1. Additional Flags

	4.3.2. Script Debugger

	5. Appendix
	5.1. Service and support
	5.2. Links and literature
	5.3. Change documentation

